Recently, cavitation on the surface of mechanical heart valves (MHVs) has been studied as a cause of fractures occurring in implanted MHVs. In the present study, we investigated the mechanism of MHV cavitation associated with the Björk-Shiley valve and the Medtronic Hall valve in an electrohydraulic total artificial heart (EHTAH). The valves were mounted in the mitral position in the EHTAH.
View Article and Find Full Text PDFRecently, cavitation on the surface of mechanical heart valves has been studied as a cause of fractures occurring in implanted mechanical heart valves. The cause of cavitation in mechanical heart valves was investigated using the 25 mm Medtronic Hall valve and the 23 mm Omnicarbon valve. Closing of these valves in the mitral position was simulated in an electrohydraulic totally artificial heart.
View Article and Find Full Text PDFElectrohydraulic total artificial heart (EHTAH) and electrohydraulic ventricular assist device (EHVAD) systems have been developed in our institute. The EHTAH system comprises a pumping unit consisting of blood pumps and an actuator, as well as an electronic unit consisting of an internal controller, internal and external batteries, and transcutaneous energy transfer (TET) and optical telemetry (TOT) subunits. The actuator, placed outside the pericardial space, reciprocates and delivers hydraulic silicone oil to the alternate blood pumps through a pair of flexible oil conduits.
View Article and Find Full Text PDF