Publications by authors named "Tadatoshi Tanifuji"

Finite-difference time-domain (FDTD) analysis has been used to predict the time-resolved reflectance from multilayered slabs with a nonscattering layer. Light propagation across the nonscattering layer was calculated based on the light intensity characteristics along a ray in free space. Additional equivalent source functions due to light from scattering regions across the nonscattering region were introduced into the diffusion equation and an additional set of the diffusion equation was solved by FDTD analysis by employing new boundary conditions.

View Article and Find Full Text PDF

We evaluate the numerical accuracy of finite-difference time-domain (FDTD) analysis of optical transport in a three-dimensional scattering medium illuminated by an isotropic point source. This analysis employs novel boundary conditions for the diffusion equation. The power radiated from an isotropic point source located at a depth equal to the reciprocal of the reduced scattering coefficient (1/μ'(s)) below the surface at the irradiated position is introduced to the integral form of the diffusion equation.

View Article and Find Full Text PDF

Finite difference time domain (FDTD) analysis has been successfully formulated for solving diffusion equation in biological tissues. Time-dependent diffusion equations are approximated by FDTD equations by assigning diffuse photon fluence rates and radiant flux defined in the diffusion equations to Yee meshes. At the boundary between scattering and no scattering material, FDTD equation including only fluence rate has been derived, which make it possible to calculate the fluence rate at the boundary.

View Article and Find Full Text PDF