Prohibitins (PHBs) are ubiquitously expressed proteins in the mitochondrial inner membrane (MIM) that provide membrane scaffolds for both mitochondrial proteins and phospholipids. Eukaryotic PHB complexes contain two highly homologous PHB subunits, PHB1 and PHB2, which are involved in various cellular processes, including metabolic control through the regulation of mitochondrial dynamics and integrity. Their mechanistic actions at the molecular level, however, particularly those of PHB1, remain poorly understood.
View Article and Find Full Text PDFMitochondria are highly dynamic organelles, which move and fuse to regulate their shape, size, and fundamental function. The dynamin-related GTPases play a critical role in mitochondrial membrane fusion. In vitro reconstitution of membrane fusion using recombinant proteins and model membranes is quite useful in elucidating the molecular mechanisms underlying membrane fusion and to identify the essential elements involved in fusion.
View Article and Find Full Text PDFBiochim Biophys Acta Bioenerg
September 2018
Mitochondria are highly dynamic organelles that undergo frequent fusion and fission. The large GTPase optic atrophy 1 (OPA1) is identified as a core component of inner membrane (IM) fusion. OPA1 exists as the membrane-anchored L-OPA1 and the proteolytically cleavage soluble S-OPA1.
View Article and Find Full Text PDFMitochondria are highly dynamic organelles that undergo frequent fusion and fission. Optic atrophy 1 (OPA1) is an essential GTPase protein for both mitochondrial inner membrane (IM) fusion and cristae morphology. Under mitochondria-stress conditions, membrane-anchored L-OPA1 is proteolytically cleaved to form peripheral S-OPA1, leading to the selection of damaged mitochondria for mitophagy.
View Article and Find Full Text PDFMitochondrial dynamic by frequent fusion and fission have important roles in various cellular signalling processes and pathophysiology in vivo. However, the molecular mechanisms that regulate mitochondrial fusion, especially in mammalian cells, are not well understood. Accordingly, we developed a novel biochemical cell-free mitochondrial fusion assay system using isolated human mitochondria.
View Article and Find Full Text PDFThe dynamin-related GTPase OPA1 is mutated in autosomal dominant optic atrophy (DOA) (Kjer type), an inherited neuropathy of the retinal ganglion cells. OPA1 is essential for the fusion of the inner mitochondrial membranes, but its mechanism of action remains poorly understood. Here we show that OPA1 has a low basal rate of GTP hydrolysis that is dramatically enhanced by association with liposomes containing negative phospholipids such as cardiolipin.
View Article and Find Full Text PDFUsing the peptide hormone glucagon and Abeta(1-40) as model systems, we have sought to elucidate the mechanisms by which fibrils grow and multiply. We here present real-time observations of growing fibrils at a single-fibril level. Growing from preformed seeds, glucagon fibrils were able to generate new fibril ends by continuously branching into new fibrils.
View Article and Find Full Text PDFAmyloid fibrils have been a critical subject in recent studies of proteins since they are associated with the pathology of more than 20 serious human diseases. Moreover, a variety of proteins and peptides not related to diseases are able to form amyloid fibrils or amyloid-like structures, implying that amyloid formation is a generic property of polypeptides. Although understanding the structure and formation of amyloid fibrils is crucial, due to the extremely high molecular weight and insolubility of amyloid fibrils, most of the conventional techniques available for soluble proteins are not directly applicable to these fibrils.
View Article and Find Full Text PDFTo understand the mechanism by which amyloid fibrils form, we have been making real-time observations of the growth of individual fibrils, using total internal fluorescence microscopy combined with an amyloid-specific fluorescence dye, thioflavin T (ThT). At neutral pH, irradiation at 442 nm with a laser beam to excite ThT inhibited the fibril growth of beta(2)-microglobulin (beta2-m), a major component of amyloid fibrils deposited in patients with dialysis-related amyloidosis. Examination with a 22-residue K3 fragment of beta2-m showed that the inhibition of fibril growth and moreover the destruction of preformed fibrils were coupled with the excitation of ThT.
View Article and Find Full Text PDFWe describe a technique to form a biotin-containing phospholipid vesicle layer on a self-assembled monolayer (SAM) deposited on a gold surface to immobilize biotinylated receptor proteins for a surface plasmon resonance (SPR) biosensor. The adsorption of vesicle of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) was examined by SPR on the SAMs of dithiobis(1-deoxy-glucitol-1-carbamoyl pentane) (DDGP), 11-mercaptoundecanoic acid, 11-mercaptoundecanol, 11-amino-1-undecanethiol, and 12-mercaptododecane, and it was found that the DOPC vesicle rapidly adsorbed on the DDGP SAM to achieve the highest coverage of the surface. By quartz crystal microbalance with dissipation monitoring (QCM-D), the DOPC layer formed on the DDGP SAM was shown to be a vesicle layer, in which intact DOPC vesicles physisorbed on the SAM surface.
View Article and Find Full Text PDFDeposition of amyloid beta (Abeta) fibrils has been suggested to play a central role in Alzheimer's disease. In clarifying the mechanism by which fibrils form and moreover in developing new treatments for amyloidosis, direct observation is important. Focusing on the interactions with surfaces at the early stages, we studied the spontaneous formation of Abeta(1-40) fibrils on quartz slides, monitored by total internal reflection fluorescence microscopy combined with thioflavin T, an amyloid-specific fluorescence dye.
View Article and Find Full Text PDFThe conformational change in amyloid beta (Abeta) peptide from its monomeric form to aggregates is crucial in the pathogenesis of Alzheimer's disease (AD). In the healthy brain, some unidentified chaperones appear to prevent the aggregation of Abeta. Here we reported that lipocalin-type prostaglandin D synthase (L-PGDS)/beta-trace, the most abundant cerebrospinal fluid (CSF) protein produced in the brain, was localized in amyloid plaques in both AD patients and AD-model Tg2576 mice.
View Article and Find Full Text PDFMethods Enzymol
November 2006
Most morphological investigations of amyloid fibrils have been performed with various microscopic methods. Among them, direct observation of fibril growth is possible using atomic force microscopy and fluorescence microscopy. Direct observation provides information about the rate and direction of growth at the single fibril level, which cannot be obtained from averaged ensemble measurements.
View Article and Find Full Text PDFAcc Chem Res
September 2006
Amyloid fibrils form through nucleation and growth. To clarify the mechanism involved, direct observations of both processes are important. First, seed-dependent fibril growth of beta2-microglobulin (beta2-m) and amyloid beta peptide was visualized in real time at the single fibril level using total internal reflection fluorescence microscopy combined with the binding of thioflavin T, an amyloid-specific fluorescence dye.
View Article and Find Full Text PDFIn Alzheimer disease, amyloid beta, a 39-43-residue peptide produced by cleavage from a large amyloid precursor protein, undergoes conformational change to form amyloid fibrils and deposits as senile amyloid plaques in the extracellular cerebral cortices of the brain. However, the mechanism of how the intrinsically linear amyloid fibrils form spherical senile plaques is unknown. With total internal reflection fluorescence microscopy combined with the use of thioflavin T, an amyloid-specific fluorescence dye, we succeeded in observing the formation of the senile plaque-like spherulitic structures with diameters of around 15 microm on the chemically modified quartz surface.
View Article and Find Full Text PDFAlphaB-crystallin, a small heat-shock protein, exhibits molecular chaperone activity. We have studied the effect of alphaB-crystallin on the fibril growth of the Abeta (amyloid beta)-peptides Abeta-(1-40) and Abeta-(1-42). alphaB-crystallin, but not BSA or hen egg-white lysozyme, prevented the fibril growth of Abeta-(1-40), as revealed by thioflavin T binding, total internal reflection fluorescence microscopy and CD spectroscopy.
View Article and Find Full Text PDFIn order to clarify the mechanism of interaction between FGF-2 and heparin, the association structures between human FGF-2 and different kinds of regioselectively desulfated heparins were observed by small angle X-ray scattering. In the FGF-2-native heparin complex, the global FGF-2 molecules appeared to attach along heparin chain as strained unilaterally. The complexes with the 6-O-, or N-desulfated heparin seemed to have randomly associated structure as compared with above system.
View Article and Find Full Text PDFAlthough metal ions such as Cu(2+), Zn(2+), and Fe(3+) are implicated to play a key role in Alzheimer disease, their role is rather complex, and comprehensive understanding is not yet obtained. We show that Cu(2+) and Zn(2+) but not Fe(3+) renders the amyloid beta peptide, Abeta(1-40), nonfibrillogenic in nature. However, preformed fibrils of Abeta(1-40) were stable when treated with these metal ions.
View Article and Find Full Text PDFTo observe an electron transfer (ET) process in a single protein molecule, we constructed a model system, Alexa-HCytb5, in which cytochrome b5 (Cytb5) is modified with a fluorescent probe, Alexa Fluor 647 dye. In this model system, intramolecular transfer of an electron from the Alexa dye to heme in Cytb5 is supposed to oxidize the probe and quench its fluorescence, and the ET reaction at the single-molecule level can be monitored as the intermittent change in the fluorescence intensity. Alexa-HCytb5 was fixed on the glass surface, and illumination of laser light by the total internal reflection resulted in blinking of the fluorescence from the single Alexa-HCytb5 molecule in the time scale of several hundred milliseconds.
View Article and Find Full Text PDFInvestigation of factors that modulate amyloid formation of proteins is important to understand and mitigate amyloid-related diseases. To understand the role of electrostatic interactions and the effect of ionic cosolutes, especially anions, on amyloid formation, we have investigated the effect of salts such as NaCl, NaI, NaClO(4), and Na(2)SO(4) on the amyloid fibril growth of beta(2)-microglobulin, the protein involved in dialysis-related amyloidosis. Under acidic conditions, these salts exhibit characteristic optimal concentrations where the fibril growth is favored.
View Article and Find Full Text PDFAmyloid fibril formation is a phenomenon common to many proteins and peptides, including amyloid beta (Abeta) peptide associated with Alzheimer's disease. To clarify the mechanism of fibril formation and to create inhibitors, real-time monitoring of fibril growth is essential. Here, seed-dependent amyloid fibril growth of Abeta(1-40) was visualized in real-time at the single fibril level using total internal reflection fluorescence microscopy (TIRFM) combined with the binding of thioflavin T, an amyloid-specific fluorescence dye.
View Article and Find Full Text PDFReal-time monitoring of fibril growth is essential to clarify the mechanism of amyloid fibril formation. Thioflavin T (ThT) is a reagent known to become strongly fluorescent upon binding to amyloid fibrils. Here, we show that, by monitoring ThT fluorescence with total internal reflection fluorescence microscopy (TIRFM), amyloid fibrils of beta2-microgobulin (beta2-m) can be visualized without requiring covalent fluorescence labeling.
View Article and Find Full Text PDF