In order to characterize the adhesion and deformation behavior between chitosan-modified liposomes and the mucin layer of the small intestine, mucin was coated on hydrophobic surface-modified carbon nanotube (CNT) probe of an atomic force microscope. The interaction between this mucin layer and the liposomes with or without chitosan modification in phosphoric acid buffer solution was determined by atomic force microscopy. The pH of the buffer solution was controlled at 2.
View Article and Find Full Text PDFA novel thermo- and pH-sensitive nanogel particle, which is a core-shell structured particle with a poly(N-isopropylacrylamide) (p(NIPAAm)) hydrogel core and a poly(ethylene glycol) monomethacrylate grafted poly(methacrylic acid) (p(MMA-g-EG)) shell, is of interest as a vehicle for the controlled release of peptide drugs. The interactions between such nanogel particles and artificial mucin layers during both approach and separation were successfully measured by using colloid probe atomic force microscopy (AFM) under various compression forces, scan velocities, and pH values. While the magnitudes of the compression forces and scan velocities did not affect the interactions during the approach process, the adhesive force during the separation process increased with these parameters.
View Article and Find Full Text PDF