Lifespan extension has been demonstrated in dwarfism mouse models relative to their wild-type. The spontaneous dwarf rat (SDR) was isolated from a closed colony of Sprague-Dawley (SD) rats. Growth hormone deficiencies have been indicated to be responsible for dwarfism in SDR.
View Article and Find Full Text PDFJ Nutr Sci Vitaminol (Tokyo)
August 2013
Several lines of evidence demonstrate the relationship between vitamin E deficiency and cognitive dysfunction in rodent models, but little is known about the underlying mechanisms. In this study, we found axonal injury in the hippocampal CA1 region of vitamin E-deficient and normal old mice using immunohistochemical assay. The number of cells in the hippocampal CA1 region of vitamin E-deficient mice and normal old mice was significantly lower than in normal young mice.
View Article and Find Full Text PDFWe aimed to define whether vitamin E improves biochemical indices associated with symptoms of atopic dermatitis-like inflammation in NC/Nga mice. After picryl chloride (PC) application to their backs, changes in the content of thiobarbituric acid reactive substances (TBARS) and vitamin E, as well as the activity of antioxidant enzymes (superoxide dismutase (SOD), glutathione peroxidase (GSHPx) and catalase) were analyzed in the serum and skin of NC/Nga mice during a symptomatic cycle. The levels of inflammatory factors were also assessed, including IgE, cyclooxigenase-2 (COX-2), tumor necrosis factor (TNF-α) and nuclear factor-κB (NF-κB).
View Article and Find Full Text PDFHuman β-1,4-galactosyltransferase (β-1,4-GalT) V was shown to be involved in the biosynthesis of N-glycans, O-glycans and lactosylceramide (Lac-Cer) by in vitro studies. To determine its substrate specificity, enzymatic activity and its products were analyzed using mouse embryonic fibroblast (MEF) cells from β-1,4-GalT V (B4galt5)-mutant mice. Analysis of expression levels of the β-1,4-GalT I-VI genes revealed that the expression of the β-1,4-GalT V gene in B4galt5 ( +/- ) - and B4galt5 ( -/- ) -derived MEF cells are a half and null when compared to that of B4galt5 ( +/+ )-derived MEF cells without altering the expression levels of other β-1,4-GalT genes.
View Article and Find Full Text PDFAim: Dwarf animal models can provide new models for aging research. For the spontaneous dwarf rat (SDR), a dwarf strain derived from the Sprague-Dawley (SD) rat, no data relevant to aging research are available. The present study aimed to examine its growth, hormonal background, lifespan and age-related diseases.
View Article and Find Full Text PDFThe present study was conducted in order to determine whether oxidative stress during aging involves dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis in association with the emergence of cognitive deficits. When young rats were subjected to oxidative stress in the form of hyperoxia, thiobarbituric acid reactive substances, conjugated diene and lipid hydroperoxides increased markedly in the HPA axis. Vitamin E inhibited such increases in lipid peroxides in each organ.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2009
The beta-1,4-galactosyltransferase (beta-1,4-GalT) V whose human and mouse genes were cloned by us has been suggested to be involved in the biosynthesis of N-glycans and O-glycans, and lactosylceramide. To determine its biological function, beta-1,4-GalT V (B4galt5) mutant mice obtained by a gene trap method were analyzed. Analysis of pre- and post-implantation embryos revealed that the B4galt5(-/-) mice die by E10.
View Article and Find Full Text PDFThere is a growing international concern that commonly used environmental contaminants have the potential to disrupt the development and functioning of the reproductive system in amphibians. One such chemical of interests is the herbicide atrazine. Effects of atrazine on sex differentiation were studied using wild-type Xenopus laevis tadpoles and all-ZZ male cohorts of X.
View Article and Find Full Text PDFTo elucidate whether oxidative stress induces cognitive deficit, and whether nerve cells in the hippocampus, which modulates learning and memory functions in the brain, are damaged by oxidative stress and during aging, the influence of hyperoxia as oxidative stress on either the cognitive function of rats or the oxidative damage of nerve cells was investigated. Young rats showed better learning ability than both old rats and vitamin E-deficient young rats. Vitamin E- supplemented young rats showed similar ability to young control rats.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
February 2005
To clarify the role of reactive oxygen species (ROS) in the aging process of amphibians, antioxidant enzyme activity and indexes of ROS damage were investigated biochemically using the livers of 3- and 10-year-old Rana nigromaculata frog males and females. Findings revealed no significant difference in survival rate between males and females. Antioxidant enzyme activity displayed an age-related decline.
View Article and Find Full Text PDFIn order to clarify the possible effects of high gravity environments on eggs and developing embryos, Rana rugosa and Xenopus laevis fertilized eggs and early embryos were raised in 2 G, 5 G, 7 G and 10 G up to the hatched tadpole stage. The results showed that: (1) High gravity significantly retarded the development of eggs and embryos beginning treatment before the blastula stage and induced various abnormalities, including two heads and microcephally suggesting that high gravity is apt to disrupt the animal-vegital axis. On the other hand, embryos beginning treatment after the gastrula stage showed a striking increase in the number of normal-appearing feeding tadpoles.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2003
Bisphenol A (BPA), known to be a xenoestrogen, is widely used in industry and dentistry. In the present study, we investigated the effects of BPA on the early development of Xenopus laevis embryos. Stage 6 embryos were exposed to 10-100 microM BPA.
View Article and Find Full Text PDFIn order to elucidate the oxidative damage in rat brain caused by oxidative stress, regional changes in the levels of lipid peroxidation products and antioxidative defense systems in cerebral cortex and hippocampus, and in their synapses, which modulate learning and memory functions in the brain, were studied. When rats were subjected to hyperoxia as an oxidative stress, thiobarbituric acid reactive substance (TBARS) in the regions studied increased more than in normal rats by approximately 35%. The values in oxygen-unexposed vitamin E-deficient rats were also higher than in normal rats.
View Article and Find Full Text PDFJ Gerontol A Biol Sci Med Sci
February 2003
Brain injury induces reactive gliosis. To examine the activation of glial cells after brain injury in young versus aged rats, we used a brain stab-wound model and examined the expression of cells positive for ED1 (ED1(+)) and glial fibrillary acidic protein (GFAP(+)) in the hippocampus in young-mature (3 months) and aged (25 months) Wistar rats at various times following hippocampal stab injury. ED1(+) cells appeared more frequently in the aged rats than in the young-mature rats under control conditions, whereas the number of GFAP(+) cells was not different between two groups.
View Article and Find Full Text PDF