Background/aims: The effects of muscle cooling on the stiffness of the human gastrocnemius muscle (GAS) were examined in vivo.
Methods: The knee joint was passively extended from 90 to 0 degrees (0 degrees = full knee extended position) with a constant ankle angle of 10 degrees dorsiflexed position (0 degrees = the sole of the foot is approximately perpendicular to the anterior margin of the shaft of the tibia) in a control condition (room temperature of 18-23 degrees C) and a cooling condition (muscle temperature decreased by 5.8 +/- 1.
The purpose of this study was to investigate differences in fat-free mass and thicknesses of various muscles among judo athletes of different performance levels. The subjects were 69 male judo athletes of 3 different performance levels. Group A was composed of athletes who participated in the Olympic Games or Asian Games (n = 13).
View Article and Find Full Text PDFWe investigated the behavior of the muscle tendon unit (MTU) of the medial gastrocnemius muscle during cyclic ankle bending exercise at eight different frequencies (ranging from 1.33 to 3.67 Hz).
View Article and Find Full Text PDFThis study estimated the passive ankle joint moment during standing and walking initiation and its contribution to total ankle joint moment during that time. The decrement of passive joint moment due to muscle fascicle shortening upon contraction was taken into account. Muscle fascicle length in the medial gastrocnemius, which was assumed to represent muscle fascicle length in plantarflexors, was measured using ultrasonography during standing, walking initiation, and cyclical slow passive ankle joint motion.
View Article and Find Full Text PDFThe purpose of the present study was to determine the in vivo passive mechanical properties, including the length below the slack length, of the gastrocnemius muscle (GAS) belly in humans. Transverse ultrasound images of the medial head of the GAS were taken in 11 subjects during passive knee extension from 80 degrees to 5 degrees with a constant ankle joint angle of 10 degrees (0 degrees is the neutral ankle position: positive values for dorsiflexion). The change in passive ankle joint moment (Mp), which is produced only by the GAS length change, was also measured during passive knee extension.
View Article and Find Full Text PDFThe purpose of this study was to clarify whether the major determinant of the extendibility of the Achilles tendon in young adults was the geometric properties of the tendon. The subjects were 38 healthy young adults (26 male, 12 female; 26 +/- 5 years). The subjects developed maximum voluntary isometric plantar flexion (MVIP) torque while the displacement of the distal myotendinous junction of the medial gastrocnemius and ankle joint rotation was determined using a B-mode ultrasonograph and a goniometer, respectively.
View Article and Find Full Text PDFJ Appl Physiol (1985)
August 2005
The purpose of this study was to investigate whether the mechanical properties of the Achilles tendon were correlated to muscle strength in the triceps surae in humans. Twenty-four men and twelve women exerted maximal voluntary isometric plantar flexion (MVIP) torque. The elongation (DeltaX) and strain of the Achilles tendon (epsilon), the proximal part of which is the composite of the gastrocnemius tendon and the soleus aponeurosis, at MVIP were determined from the displacement of the distal myotendinous junction of the medial gastrocnemius using ultrasonography.
View Article and Find Full Text PDFThe purpose of this study was to clarify the influence of muscle-tendon complex stretch on electromechanical delay (EMD) in terms of the extent of tendon slack in the human medial gastrocnemius (MG). EMD and MG tendon length were measured at each of five ankle joint angles (-30, -20, -10, 0, and 5 degrees : positive values for dorsiflexion) using percutaneous electrical stimulation and ultrasonography, respectively. The extent of MG tendon slack was calculated as MG tendon length shortening, standardized with MG tendon slack length obtained at the joint angle (-16 degrees +/- 5 degrees ) where the passive ankle joint torque was zero.
View Article and Find Full Text PDFThe extent of elongation and slackness of aponeurosis and tendon, and muscle fiber length of human medial gastrocnemius muscle are determined in vivo using ultrasonography. The ankle joint is passively moved at 5 degrees /s within the joint range of -36 to 7 degrees (0 degrees = neutral anatomic position; positive values for dorsiflexion) by a dynamometer while the length change of the aponeurosis and tendon is determined using ultrasonography (n = 8 men). Strain is calculated as the length change relative to the reference length of aponeurosis and tendon when the passive joint moment is 0.
View Article and Find Full Text PDFTwo questions were addressed in this study: (1) how much strain of the superficial aponeurosis of the human medial gastrocnemius muscle (MG) was obtained during voluntary isometric contractions in vivo, (2) whether there existed inhomogeneity of the strain along the superficial aponeurosis. Seven male subjects, whose knees were extended and ankles were flexed at right angle, performed isometric plantar flexion while elongation of superficial aponeurosis of MG was determined from the movements of the intersections made by the superficial aponeurosis and fascicles using ultrasonography. The strain of the superficial aponeurosis at the maximum voluntary contraction, estimated from the elongation and length data, was 5.
View Article and Find Full Text PDFFascicle curvature of human medial gastrocnemius muscle (MG) was determined in vivo by ultrasonography during isometric contractions at three (distal, central, and proximal) locations (n = 7) and at three ankle angles (n = 7). The curvature significantly (P < 0.05) increased from rest to maximum voluntary contraction (MVC) (0.
View Article and Find Full Text PDFLoad-strain characteristics of distal (deep) and proximal (superficial) aponeuroses were determined in vivo for human tibialis anterior muscle (TA). Seven male subjects exerted isometric dorsiflexion torque from relaxation to voluntary maximum while elongation of both aponeuroses of TA was determined by ultrasonography. Two positions (end of the muscle belly and a proximal part) and one position (distal part) were scanned for the deep and superficial aponeuroses, respectively, and tendinous movements of the respective positions were determined.
View Article and Find Full Text PDF