Publications by authors named "Tadashi Morikawa"

Background: Methotrexate (MTX) is one of the most widely used medications to treat rheumatoid arthritis (RA), and recent studies have also suggested the potential benefit of the drug for the treatment of osteoarthritis (OA) of the knee. MTX is commonly administered in oral formulations, but is often associated with systemic adverse reactions. In an attempt to address this issue, we have shown previously that a conjugate of hyaluronic acid (HA) and MTX exhibits potential as a drug candidate for intra-articular treatment of inflammatory arthritis.

View Article and Find Full Text PDF

We previously reported that a conjugate of hyaluronic acid (HA) and methotrexate (MTX) could be a prototype for future osteoarthritis drugs having the efficacy of the two clinically validated agents but with a reduced risk of the systemic side effects of MTX by using HA as the drug delivery carrier. To identify a clinical candidate, we attempted optimization of a lead, conjugate 1. Initially, in fragmentation experiments with cathepsins, we optimized the peptide part of HA-MTX conjugates to be simpler and more susceptible to enzymatic cleavage.

View Article and Find Full Text PDF

Hyaluronic acid (HA) provides synovial fluid viscoelasticity and has a lubricating effect. Injections of HA preparations into the knee joint are widely used as osteoarthritis therapy. The current HA products reduce pain but do not fully control inflammation.

View Article and Find Full Text PDF

Enzyme-catalyzed asymmetric reduction of ethyl 4-chloro-3-oxobutanoate in an organic solvent-water diphasic system was studied. NADPH-dependent aldehyde reductase isolated from Sporobolomyces salmonicolor AKU4429 and glucose dehydrogenase were used as catalysts for reduction of ethyl 4-chloro-3-oxobutanoate and recycling of NADPH, respectively, in this system. In an aqueous system, the substrate was unstable.

View Article and Find Full Text PDF