Neuronal differentiation, maturation, and synapse formation are regulated by various growth factors. Here we show that epidermal growth factor (EGF) negatively regulates presynaptic maturation and synapse formation. In cortical neurons, EGF maintained axon elongation and reduced the sizes of growth cones in culture.
View Article and Find Full Text PDFPhenotypic development of neocortical GABA neurons is highly plastic and promoted by various neurotrophic factors such as neuregulin-1. A subpopulation of GABA neurons expresses not only neuregulin receptor (ErbB4) but also epidermal growth factor (EGF) receptor (ErbB1) during development, but the neurobiological action of EGF on this cell population is less understood than that of neuregulin-1. Here, we examined the effects of exogenous EGF on immature GABA neurons both in culture and in vivo and also explored physiological consequences in adults.
View Article and Find Full Text PDFProinflammatory cytokines perturb brain development and neurotransmission and are implicated in various psychiatric diseases, such as schizophrenia and depression. These cytokines often induce the production of reactive oxygen species (ROS) and regulate not only cell survival and proliferation but also inflammatory process and neurotransmission. Under physiological conditions, ROS are moderately produced in mitochondria but are rapidly scavenged by reducing agents in cells.
View Article and Find Full Text PDFThe ErbB1 ligand family includes epidermal growth factor (EGF), transforming growth factor-alpha (TGFalpha), heparin-binding EGF-like growth factor, amphiregulin and betacellulin. Previously, we demonstrated that TGFalpha decreases alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors in cultured neocortical gamma-aminobutyric acid (GABA) neurons. In the present study, we examined in vivo effects of EGF and TGFalpha in the mouse neocortex using electrophysiological and biochemical techniques.
View Article and Find Full Text PDFIn the developing neocortex, brain-derived neurotrophic factor (BDNF) exerts a trophic activity to increase the expression and channel activity of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor subunits. Here, we demonstrate that the epidermal growth factor (EGF) receptor (ErbB1) ligands exert the opposite biological activity in cultured neocortical neurons. Subchronic stimulation of ErbB1 with transforming growth factor alpha (TGFalpha), EGF, or heparin-binding EGF (HB-EGF) down-regulated protein expression of the GluR1 AMPA receptor subunit in cultured neocortical neurons.
View Article and Find Full Text PDFEpidermal growth factor (EGF) and its structurally related proteins are involved in the developmental regulation of various brain neurons, including midbrain dopaminergic neurons. We recently reported EGF and EGF-receptor abnormalities in both the brain tissues and blood of schizophrenic patients. Administration of EGF to neonatal rats transiently increases tyrosine hydroxylase expression and subsequently results in behavioral abnormalities in prepulse inhibition of acoustic startle, locomotor activity, and social interaction after development.
View Article and Find Full Text PDF