Publications by authors named "Tadamune Otsubo"

The prevalent human pathogen, mumps virus (MuV; orthorubulavirus parotitidis) causes various complications and serious sequelae, such as meningitis, encephalitis, deafness, and impaired fertility. Direct-acting antivirals (DAAs) targeting MuV which can prevent mumps and mumps-associated complications and sequelae are yet to be developed. Paramyxoviridae family members, such as MuV, possess viral surface hemagglutinin-neuraminidase (HN) protein with sialidase activity which facilitates efficient viral replication.

View Article and Find Full Text PDF

In influenza A virus-infected cells, newly synthesized viral neuraminidases (NAs) transiently localize at the host cell Golgi due to glycosylation, before their expression on the cell surface. It remains unproven whether Golgi-localized intracellular NAs exhibit sialidase activity. We have developed a sialidase imaging probe, [2-(benzothiazol-2-yl)-5-(non-1-yn-1-yl) phenyl]-α-D-N-acetylneuraminic acid (BTP9-Neu5Ac).

View Article and Find Full Text PDF

Visualization of virus-infected cells is usually performed by immunostaining with an antiviral antibody. On the other hand, we established an easy method for fluorescence (FL) imaging of cells infected with influenza A and B viruses and some paramyxoviruses without the need for cell fixation and an antiviral antibody. These viruses and the cells they have infected express the viral surface enzyme "neuraminidase" or "hemagglutinin-neuraminidase" that shows sialidase activity.

View Article and Find Full Text PDF

Sialidase cleaves sialic acid residues from glycans such as glycoproteins and glycolipids. In the brain, desorption of the sialic acid by sialidase is essential for synaptic plasticity, learning and memory and synaptic transmission. BTP3-Neu5Ac has been developed for sensitive imaging of sialidase enzyme activity in mammalian tissues.

View Article and Find Full Text PDF

Reduction of elastin in the skin causes various skin diseases as well as wrinkles and sagging with aging. Sialidase is a hydrolase that cleaves a sialic acid residue from sialoglycoconjugate. Cleavage of sialic acid from microfibrils by the sialidase isozyme Neu1 facilitates elastic fiber assembly.

View Article and Find Full Text PDF

Sialidase cleaves sialic acid residues from a sialoglycoconjugate: oligosaccharides, glycolipids and glycoproteins that contain sialic acid. Histochemical imaging of the mouse pancreas using a benzothiazolylphenol-based sialic acid derivative (BTP3-Neu5Ac), a highly sensitive histochemical imaging probe used to assess sialidase activity, showed that pancreatic islets have intense sialidase activity. The sialidase inhibitor 2,3-dehydro-2-deoxy-N-acetylneuraminic acid (DANA) remarkably enhances glutamate release from hippocampal neurons.

View Article and Find Full Text PDF

Sialidases are widely distributed in nature and are involved in many physiological and pathological processes. Sialidases are expressed and work in various tissues and organelles. Clarification of the localization of sialidases is very helpful as a way to understand their functions.

View Article and Find Full Text PDF

Sialoglyco particulates carrying an -glycolylneuraminyl-α-(2 → 3)--acetyllactosamine (Neu5Gcα2,3LacNAc) residue that displays a high level of affinity for the equine influenza virus (EIV) were generated using sialoglycopolypeptide and hexyl-containing hybrid silica particulates. The particulates were spherical with a diameter of approximately 950 nm and found to have good dispersibility in aqueous solution. Interaction between the sialoglyco particulates and the EIV was investigated by real-time reverse transcriptase polymerase chain reaction (rRT-PCR) of the EIV genome captured on the particulates.

View Article and Find Full Text PDF

Immunochromatographic kits and RT-PCR are widely used as diagnostic tools for influenza detection in clinical and hygiene fields. Immunochromatographic kits are useful for differential typing of influenza A and influenza B but cannot show if the detected virus strains have acquired drug resistance against neuraminidase inhibitors that target sialidase activity of viral neuraminidase. Although RT-PCR enables determination of drug-resistant mutants, its efficacy is limited to viruses carrying a known substitution in their neuraminidase genome sequence.

View Article and Find Full Text PDF

Sialidase, which removes sialic acid residues in sialylglycoconjugates, is essential for hippocampal memory and synaptic plasticity. Enzyme activity of sialidase is rapidly increased in response to neural excitation. Because sialic acid bound to gangliosides such as the tetra-sialoganglioside GQ1b is crucial for calcium signalling and neurotransmitter release, neural activity-dependent removal of sialic acid may affect hippocampal neurotransmission.

View Article and Find Full Text PDF

The lack of a highly sensitive and simple method for the quantitative analysis of glycan has impeded the exploration of protein glycosylation patterns (glycomics), evaluation of antibody drug stability, and screening of disease glycan biomarkers. In this study, we describe a novel and simplified quantitative glycomics strategy. Quantitation by mutant enzyme reaction stable isotope labeling (QMERSIL) to label the N-glycans with either a nondeuterated (d0-) or deuterated (d8-) 4-(2,4-Dinitro-5-piperazin-1-yl-phenyl)-1,1-dimethyl-piperazin-1-ium (MPDPZ)-Boc-asparaginyl-N-acetyl-d-glucosamine (Boc-Asn-GlcNAc) acceptor of a positive charge structure through the glycosynthase (Endo-M-N175Q) transglycosylation reaction with mass spectrometry facilitates comparative glycomics.

View Article and Find Full Text PDF

Aeromonas sobria serine protease (ASP) is an extracellular serine protease secreted by the organism. Here, we identified the amino acid residue of ASP that contributes to substrate specificity by using both synthetic peptides and biological protein components. The results showed that the arginine residue at position 566 (Arg-566) of ASP, which is located in the extra occluding region of ASP close to an entrance of the catalytic cavity, is involved in the substrate specificity.

View Article and Find Full Text PDF

A series of novel sialoglycopolypeptides carrying N-glycolylneuraminic acid (Neu5Gc)-containing trisaccharides having α(2 → 3)- and α(2 → 6)-linkages in the side chains of γ-polyglutamic acid (γ-PGA) were designed as competitive inhibitors against equine influenza viruses (EIV), which critically recognize the Neu5Gc residue for receptor binding. Using horse red blood cells (HRBC) we successfully evaluated the binding activity of the multivalent Neu5Gc ligands to both equine and canine influenza viruses in the hemagglutination inhibition (HI) assay. Our findings show the multivalent α2,3-linked Neu5Gc-ligands (3a-c and 7) selectively inhibit hemagglutination mediated by both influenza viruses and display a strong inhibitory activity.

View Article and Find Full Text PDF

Sialidase cleaves sialic acids on the extracellular cell surface as well as inside the cell and is necessary for normal long-term potentiation (LTP) at mossy fiber-CA3 pyramidal cell synapses and for hippocampus-dependent spatial memory. Here, we investigated in detail the role of sialidase in memory processing. Sialidase activity measured with 4-methylumbelliferyl-α-d--acetylneuraminic acid (4MU-Neu5Ac) or 5-bromo-4-chloroindol-3-yl-α-d--acetylneuraminic acid (X-Neu5Ac) and Fast Red Violet LB was increased by high-K-induced membrane depolarization.

View Article and Find Full Text PDF

Sialic acid bound to glycans in glycolipids and glycoproteins is essential for synaptic plasticity and memory. Sialidase (EC 3.2.

View Article and Find Full Text PDF

Most equine influenza A viruses (IAVs) show strong binding to glycoconjugates containing N-glycolylneuraminic acid (Neu5Gc) as well as N-acetylneuraminic acid (Neu5Ac). Therefore, the progeny of equine IAV is thought to be released from the infected cell surface through removal of sialic acids by the viral sialidase. In the present study, equine IAV sialidases showed significantly lower substrate affinity than that of human IAV sialidases to artificial and natural Neu5Gc-conjugated substrates.

View Article and Find Full Text PDF

Influenza A and B viruses possess a neuraminidase protein that shows sialidase activity. Influenza virus-specific neuraminidase inhibitors (NAIs) are commonly used for clinical treatment of influenza. However, some influenza A and B viruses that are resistant to NAIs have emerged in nature.

View Article and Find Full Text PDF

In this letter we report the design and synthesis of a series of plasmin inhibitors, which share the amino acid-based linker with limited free rotation between the hydantoin moiety and the benzimidazole scaffold. Our studies led to potent plasmin inhibitors and yielded important new insights into their structure-activity relationship for binding to the active site of plasmin.

View Article and Find Full Text PDF

The effects of 3,5-dihydroxy-4-methoxybenzyl alcohol (DHMBA), and zinc--both components of the Pacific oyster Crassostrea gigas--were examined by glutamatergic neuron activity in rats in an in vivo microdialysis experiment and an in vitro brain slice experiment. The basal concentration of extracellular glutamate in the hippocampus was decreased under hippocampal perfusion with DHMBA (1 mmol l(-1)) or ZnCl2 (μmol l(-1)), indicating that DHMBA and Zn(2+) suppress glutamatergic neuron activity under basal (static) conditions. To assess the preventive effect of DHMBA and Zn(2+) on glutamate release from neuron terminals, brain slices were pretreated with DHMBA (1 mmol l(-1)) or ZnCl2 (100 nmol l(-1)) for 1 h, then stimulated with high K(+).

View Article and Find Full Text PDF

Mumps viruses show diverse cytopathic effects (CPEs) of infected cells and viral plaque formation (no CPE or no plaque formation in some cases) depending on the viral strain, highlighting the difficulty in mumps laboratory studies. In our previous study, a new sialidase substrate, 2-(benzothiazol-2-yl)-4-bromophenyl 5-acetamido-3,5-dideoxy-α-D-glycero-D-galacto-2-nonulopyranosidonic acid (BTP3-Neu5Ac), was developed for visualization of sialidase activity. BTP3-Neu5Ac can easily and rapidly perform histochemical fluorescent visualization of influenza viruses and virus-infected cells without an antiviral antibody and cell fixation.

View Article and Find Full Text PDF

Human parainfluenza virus type 1 (hPIV1) does not form clear plaque by the conventional plaque formation assay because of slightly a cytopathic effects in many cell lines infected with hPIV1, thus making in virus titration, isolation and inhibitor evaluation difficult. We have succeeded in fluorescent histochemical visualization of sialidase activities of influenza A and B viruses, Newcastle disease virus and Sendai virus by using a novel fluorescent sialidase substrate, 2-(benzothiazol-2-yl)-4-bromophenyl 5-acetamido-3,5-dideoxy-α-D-glycero-D-galacto-2-nonulopyranosidonic acid (BTP3-Neu5Ac). In this study, we applied the BTP3-Neu5Ac assay for rapid detection of hPIV1 and hPIV type 3.

View Article and Find Full Text PDF

The two main molecular species of sialic acid existing in nature are N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). Neu5Ac is abundant in mammalian brains and plays crucial roles in many neural functions. In contrast, Neu5Gc is present only at a trace level in vertebrate brains.

View Article and Find Full Text PDF

Here we report a series of plasmin inhibitors which were originally derived from the parent structure of 1 and 2. Our efforts focused on the optimization of the P4 moiety of 2 and on the quest of alternative scaffold to pyrrolopyrimidine in the parent compounds. The results of the former gave us pivotal information on the further optimization of the P4 moiety in plasmin inhibitors and those of the latter revealed that appropriate moieties extending from the benzimidazole scaffold engaged with S4 pocket in the active site of plasmin.

View Article and Find Full Text PDF

Newcastle disease virus (NDV), belonging to the family Paramixoviridae, causes respiratory and neuronal symptoms in almost all birds. NDV has haemagglutinin-neuraminidase (HN) glycoprotein possessing sialidase activity. HN glycoprotein is highly expressed on the surface of NDV-infected cells, resulting in much higher sialidase activity in NDV-infected cells than in non-infected cells.

View Article and Find Full Text PDF

Histochemical visualization of phosphatase is exclusively required for Western immunoblotting and antigen-positive cell staining using an alkaline phosphatase (AP)-labeled secondary antibody. This detection has been performed by several reagents including 5-bromo-4-chloro-3-indolyl-phosphate (X-Phos), nitro blue tetrazolium (NBT), 3-(2'-spiroadamantane)-4-methoxy-4-(3″-phosphoryloxy)phenyl-1,2-dioxetane and 2-(5'-chloro-2'-phosphoryloxyphenyl)-6-chloro-4-[3H]-quinazolinone (ELF® 97 Phosphate). We previously reported that 2-(benzothiazol-2-yl)-4-bromophenol bonded with N-acetylneuraminic acid (BTP3-Neu5Ac), enabled fluorescent histochemical visualization of sialidase activity.

View Article and Find Full Text PDF