Publications by authors named "Tadahito Yasuda"

Senescent cells can either to promote immunosuppressive tumor microenvironment or facilitate immune surveillance. Despite the revolutionary impact of cancer immunotherapy, durable responses in solid tumors, particularly in advanced stages, remain limited. Recent studies have shed light on the influence of senescent status within the tumor microenvironment (TME) on therapy resistance and major efforts are needed to overcome these challenges.

View Article and Find Full Text PDF

Diffuse-type gastric cancer (DGC) is a subtype of gastric cancer that is prone to peritoneal dissemination, with poor patient prognosis. Although intercellular adhesion loss between cancer cells is a major characteristic of DGCs, the mechanism underlying the alteration in cell-to-extracellular matrix (ECM) adhesion is unclear. We investigated how DGCs progress and cause peritoneal dissemination through interactions between DGC cells and the tumour microenvironment (TME).

View Article and Find Full Text PDF

Although immunotherapy has revolutionized solid tumor treatment, durable responses in gastric cancer (GC) remain limited. The heterogeneous tumor microenvironment (TME) facilitates immune evasion, contributing to resistance to conventional and immune therapies. Recent studies have highlighted how specific TME components in GC acquire immune escape capabilities through cancer-specific factors.

View Article and Find Full Text PDF

Malignant ascites accompanied by peritoneal dissemination contain various factors and cell populations as well as cancer cells; however, how the tumor microenvironment is shaped in ascites remains unclear. Single-cell proteomic profiling and a comprehensive proteomic analysis are conducted to comprehensively characterize malignant ascites. Here, we find defects in immune effectors along with immunosuppressive cell accumulation in ascites of patients with gastric cancer (GC) and identify five distinct subpopulations of CD45(-)/EpCAM(-) cells.

View Article and Find Full Text PDF

Background & Aims: Hepatocellular carcinoma (HCC) mainly develops from chronic hepatitis. Metabolic dysfunction-associated steatohepatitis (MASH) has gradually become the main pathogenic factor for HCC given the rising incidence of obesity and metabolic diseases. 15-Hydroxyprostaglandin dehydrogenase (15-PGDH) degrades prostaglandin 2 (PGE2), which is known to exacerbate inflammatory responses.

View Article and Find Full Text PDF
Article Synopsis
  • Glycolysis is notably increased in PDAC cells, causing glucose scarcity for non-tumor cells in the tumor microenvironment (TME), which affects cell metabolism and behavior.
  • Cancer-associated fibroblasts (CAFs) in this environment use lactate produced by tumor cells as an energy source, which enhances their proliferation and contributes to immunosuppression.
  • The study highlights lactate dehydrogenase A (LDHA) as a poor prognostic indicator in PDAC and presents LDHA inhibition as a potential therapeutic strategy to reduce tumor growth and boost immune responses.
View Article and Find Full Text PDF

Fibroblast activation protein (FAP) generally shows low or undetectable expression in most normal tissues but is highly expressed in fibroblasts in almost all carcinomas. FAP is one of the potential molecules to detect activated fibroblasts and has multiple roles in tumour progression. We generated transgenic mice that specifically expressed tdTomato along with FAP promoter activity.

View Article and Find Full Text PDF

Unlabelled: Excess stroma and cancer-associated fibroblasts (CAF) enhance cancer progression and facilitate immune evasion. Insights into the mechanisms by which the stroma manipulates the immune microenvironment could help improve cancer treatment. Here, we aimed to elucidate potential approaches for stromal reprogramming and improved cancer immunotherapy.

View Article and Find Full Text PDF

Background: Remodeling the tumor microenvironment (TME) to benefit cancer cells is crucial for tumor progression. Although diffuse-type gastric cancer (DGC) preferentially interacts with the TME, the precise mechanism of the complicated network remains unknown. This study aimed to investigate the mutual activation mechanism underlying DGC progression.

View Article and Find Full Text PDF

The arachidonic acid cascade is a major inflammatory pathway that produces prostaglandin E (PGE2). Although inhibition of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) is reported to lead to PGE2 accumulation, the role of 15-PGDH expression in the tumor microenvironment remains unclear. We utilized Panc02 murine pancreatic cancer cells for orthotopic transplantation into wild-type and 15-pgdh mice and found that 15-pgdh depletion in the tumor microenvironment leads to enhanced tumorigenesis accompanied by an increase in cancer-associated fibroblasts (CAFs) and the promotion of fibrosis.

View Article and Find Full Text PDF

Background: Signet ring cell carcinoma (SRCC) is a particular histologic variant of gastric cancer (GC). However, the critical factor related to the aggressive characteristics of SRCC has not been determined.

Methods: We collected surgically resected tissues from 360 GC patients in the Kumamoto University cohort and generated survival curves via the Kaplan-Meier method.

View Article and Find Full Text PDF

Cellular senescence in cancer development is known to have tumor-suppressive and tumor-promoting roles. Recent studies have revealed numerous molecular mechanisms of senescence followed by senescence-associated secretory phenotype induction and showed the significance of senescence on both sides. Cellular senescence in stromal cells is one of the reasons for therapeutic resistance in advanced cancer; thus, it is an inevitable phenomenon to address while seeking an effective cancer treatment strategy.

View Article and Find Full Text PDF

Unlabelled: Gastric cancer heterogeneity represents a barrier to disease management. We generated a comprehensive single-cell atlas of gastric cancer (>200,000 cells) comprising 48 samples from 31 patients across clinical stages and histologic subtypes. We identified 34 distinct cell-lineage states including novel rare cell populations.

View Article and Find Full Text PDF

Cancer cells craftily adapt their energy metabolism to their microenvironment. Nutrient deprivation due to hypovascularity and fibrosis is a major characteristic of pancreatic ductal adenocarcinoma (PDAC); thus, PDAC cells must produce energy intrinsically. However, the enhancement of energy production via activating Kras mutations is insufficient to explain the metabolic rewiring of PDAC cells.

View Article and Find Full Text PDF

Accumulating evidence suggests that the malignant behavior of cancer is influenced by stromal activity in the tumor microenvironment. Cancer-associated fibroblasts (CAFs), which are the main component of the cancerous stroma, play an important role in cancer development. Here, we describe a protocol to establish CAFs from surgically resected tissues.

View Article and Find Full Text PDF

In the tumor microenvironment, senescent non-malignant cells, including cancer-associated fibroblasts (CAFs), exhibit a secretory profile under stress conditions; this senescence-associated secretory phenotype (SASP) leads to cancer progression and chemoresistance. However, the role of senescent CAFs in metastatic lesions and the molecular mechanism of inflammation-related SASP induction are not well understood. We show that pro-inflammatory cytokine-driven EZH2 downregulation maintains the SASP by demethylating H3K27me3 marks in CAFs and enhances peritoneal tumor formation of gastric cancer (GC) through JAK/STAT3 signaling in a mouse model.

View Article and Find Full Text PDF

Recent studies have revealed that cancer stem cells (CSCs) undergo metabolic alterations that differentiate them from non-CSCs. Inhibition of specific metabolic pathways in CSCs has been conducted to eliminate the CSC population in many types of cancer. However, there is conflicting evidence about whether CSCs depend on glycolysis or mitochondrial oxidative phosphorylation (OXPHOS) to maintain their stem cell properties.

View Article and Find Full Text PDF

The effectiveness of current chemotherapies for cancer is gradually progressing; however achieving a complete cure through chemotherapy is still difficult and has been the main goal in treatment of advanced cancer. Drug resistance is an issue in cancer therapy, therefore increasing numbers of investigations into drug resistance have focused on the characteristics of the cancer cells themselves. The interaction between the tumor microenvironment (TME) and cancer cells is also intimately involved in the development of drug resistance.

View Article and Find Full Text PDF

Extracellular vesicles (EV) from cancer-associated fibroblasts (CAF) are composed of diverse payloads. Although CAFs impact the aggressive characteristics of gastric cancer cells, the contribution of CAF-EV to gastric cancer progression has not been elucidated. Here, we investigated the molecular mechanism of the changes in gastric cancer characteristics induced by CAF-EV.

View Article and Find Full Text PDF

A 54-year-old woman finished the treatment for chronic hepatitis C and achieved sustained virological response. She was identified with some tumor lesions at her liver during follow-up observation by ultrasonography. From contrast-enhanced computed tomography, there were four tumors at sub-segment 4/5, S5, S6, and S7.

View Article and Find Full Text PDF

Background: To date, only a few cases of multiple GISTs with different clones in different organs have been published. However, a case of multiple GISTs with different clones occurring in a single organ has never been reported.

Case Presentation: A 41-year-old patient underwent laparoscopic partial gastrectomy for gastric gastrointestinal stromal tumor (GIST) in 2012.

View Article and Find Full Text PDF

Gastric cancer (GC) is a leading cause of cancer-related death worldwide. Cancer stem cells (CSCs) are known to be involved in chemotherapy resistance and the development of metastases. Although CSCs harbor self-renewal and tumorigenic abilities, the immune microenvironment surrounding CSCs provides various factors and supports the maintenance of CSC properties.

View Article and Find Full Text PDF

Increasing lines of evidence show that the malignant behavior of cancer is not exclusively attributable to cancer cells but also radically influenced by cancerous stroma activity and controlled through various mechanisms by the microenvironment. In addition to structural components, such as the extracellular matrix, stromal cells, such as macrophages, endothelial cells, and specifically cancer-associated fibroblasts (CAFs), have attracted substantial attention over recent decades. CAFs provide routes for aggressive carcinomas and contribute to invasion and metastasis through the biochemical alteration and regulation of cancer-related pathways.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) are reportedly involved in invasion and metastasis in several types of cancer, including gastric cancer (GC), through the stimulation of CXCL12/CXCR4 signaling. However, the mechanisms underlying these tumor-promoting effects are not well understood, which limits the potential to develop therapeutic targets against CAF-mediated CXCL12/CXCR4 signaling. CXCL12 expression was analyzed in resected GC tissues from 110 patients by immunohistochemistry (IHC).

View Article and Find Full Text PDF

Although cancer-associated fibroblasts (CAFs) mainly produce CXCL12 and stimulate CXCL12/CXCR4 signaling in cancer cells, the significance of this interaction in adenocarcinoma of the esophagogastric junction (AEG) was unclear. This study investigated the functional characteristics of CAF-derived CXCL12 in AEG. Immunohistochemical staining for CXCL12 was performed on sections from 123 AEG patients and analyzed against clinicopathological data.

View Article and Find Full Text PDF