This study aimed to develop a cyclosporine A (CsA)-loaded ternary solid dispersion (tSD/CsA) to improve the storage stability of a solid dispersion (SD) system and the oral absorbability of CsA. Hydroxypropyl cellulose (HPC) and hydroxypropyl methylcellulose acetate succinate (HPMCAS) were selected as carrier materials of tSD, and tSD/CsA was prepared with a fine droplet drying process, a powderization technology that employs an inkjet head. The physicochemical properties of tSD/CsA were evaluated in terms of morphology, storage stability, dissolution behavior, and mucoadhesive property.
View Article and Find Full Text PDFThe author wishes to make the following correction to this paper [...
View Article and Find Full Text PDFThe present study aimed to develop inhalable poly (lactic--glycolic acid) (PLGA)-based microparticles of salmon calcitonin (sCT) for sustained pharmacological action by the fine droplet drying (FDD) process, a novel powderization technique employing printing technologies. PLGA was selected as a biodegradable carrier polymer for sustained-release particles of sCT (sCT/SR), and physicochemical characterizations of sCT/SR were conducted. To estimate the in vivo efficacy of the sCT/SR respirable powder (sCT/SR-RP), plasma calcium levels were measured after intratracheal administration in rats.
View Article and Find Full Text PDFThe present study aimed to develop an amorphous solid dispersion (ASD) of cyclosporine A (CsA) by a fine droplet drying (FDD) process for improvement in oral absorption of CsA. CsA and hydroxypropyl cellulose-SSL were dissolved in 1,4-dioxane, and the solution was powdered by the FDD process to obtain the ASD formulation of CsA (ASD/CsA). The ASD/CsA was characterized in terms of morphology, particle size distribution, crystallinity, dissolution behavior, physicochemical stability, and pharmacokinetic behavior in rats.
View Article and Find Full Text PDF