Publications by authors named "Tadafumi C Ikezu"

Aggregated α-synuclein (α-SYN) proteins, encoded by the gene, are hallmarks of Lewy body disease (LBD), affecting multiple brain regions. However, the specific mechanisms underlying α-SYN pathology in cortical neurons, crucial for LBD-associated dementia, remain unclear. Here, we recapitulated α-SYN pathologies in human induced pluripotent stem cells (iPSCs)-derived cortical organoids generated from patients with LBD with gene triplication.

View Article and Find Full Text PDF
Article Synopsis
  • - Alzheimer's disease (AD) and argyrophilic grain disease (AGD) may overlap in terms of tau pathology, but the effects of the APOE4 gene on AGD risk remain unclear despite its known role in AD development.
  • - A study of postmortem brain samples revealed that while APOE4 increases the risk of AD-related tau lesions, it does not impact the risk of AGD tau lesions, and other pathologies can influence amyloid-beta and tau levels.
  • - The presence of AD tau lesions (AD-tau) is linked to cognitive decline, whereas AGD tau lesions (AGD-tau) are not, suggesting that different mechanisms underlie the accumulation of amyloid and tau in these diseases,
View Article and Find Full Text PDF

Microglial involvement in Alzheimer's disease (AD) pathology has emerged as a risk-determining pathogenic event. While apolipoprotein E (APOE) is known to modify AD risk, it remains unclear how microglial apoE impacts brain cognition and AD pathology. Here, using conditional mouse models expressing apoE isoforms in microglia and central nervous system-associated macrophages (CAMs), we demonstrate a cell-autonomous effect of apoE3-mediated microglial activation and function, which are negated by apoE4.

View Article and Find Full Text PDF

Background: The apolipoprotein E (APOE) gene is the strongest genetic risk factor for Alzheimer's disease (AD); however, how it modulates brain homeostasis is not clear. The apoE protein is a major lipid carrier in the brain transporting lipids such as cholesterol among different brain cell types.

Methods: We generated three-dimensional (3-D) cerebral organoids from human parental iPSC lines and its isogenic APOE-deficient (APOE) iPSC line.

View Article and Find Full Text PDF

Background: The rare p.H157Y variant of TREM2 (Triggering Receptor Expressed on Myeloid Cells 2) was found to increase Alzheimer's disease (AD) risk. This mutation is located at the cleavage site of TREM2 extracellular domain.

View Article and Find Full Text PDF

Objective: Recent evidence supports a link between increased TDP-43 burden and the presence of an APOE4 gene allele in Alzheimer's disease (AD); however, it is difficult to conclude the direct effect of APOE on TDP-43 pathology due to the presence of mixed AD pathologies. The goal of this study is to address how APOE isoforms impact TDP-43 pathology and related neurodegeneration in the absence of typical AD pathologies.

Methods: We overexpressed human TDP-43 via viral transduction in humanized APOE2, APOE3, APOE4 mice, and murine Apoe-knockout (Apoe-KO) mice.

View Article and Find Full Text PDF

Background: Abnormal lipid accumulation has been recognized as a key element of immune dysregulation in microglia whose dysfunction contributes to neurodegenerative diseases. Microglia play essential roles in the clearance of lipid-rich cellular debris upon myelin damage or demyelination, a common pathogenic event in neuronal disorders. Apolipoprotein E (apoE) plays a pivotal role in brain lipid homeostasis; however, the apoE isoform-dependent mechanisms regulating microglial response upon demyelination remain unclear.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common cause of dementia worldwide, and its prevalence is rapidly increasing due to extended lifespans. Among the increasing number of genetic risk factors identified, the apolipoprotein E (APOE) gene remains the strongest and most prevalent, impacting more than half of all AD cases. While the ε4 allele of the APOE gene significantly increases AD risk, the ε2 allele is protective relative to the common ε3 allele.

View Article and Find Full Text PDF

Wnt and R-spondin (Rspo) proteins are two major types of endogenous Wnt/β-catenin signaling agonists. While Wnt/β-catenin signaling is greatly diminished in Alzheimer's disease (AD), it remains to be elucidated whether the inhibition of this pathway is associated with dysregulation of Wnt and Rspo proteins. By analyzing temporal cortex RNA-seq data of the human postmortem brain samples, we found that WNT1 and RRPO2 were significantly downregulated in human AD brains.

View Article and Find Full Text PDF
Article Synopsis
  • * Research using mouse models shows that overexpressing the normal TREM2 (TREM2-WT) helps reduce amyloid plaques early in the disease, while a risky variant (TREM2-R47H) makes the amyloid problem worse later on.
  • * The study also found that TREM2-WT leads to a decrease in harmful microglial activity early on, while TREM2-R47H increases certain immune responses in middle stages, suggesting timing is crucial for TREM2's effects in Alzheimer's disease.
View Article and Find Full Text PDF

Approximately half of Alzheimer's disease (AD) brains have concomitant Lewy pathology at autopsy, suggesting that α-synuclein (α-SYN) aggregation is a regulated event in the pathogenesis of AD. Genome-wide association studies revealed that the ε4 allele of the apolipoprotein E (APOE4) gene, the strongest genetic risk factor for AD, is also the most replicated genetic risk factor for Lewy body dementia (LBD), signifying an important role of APOE4 in both amyloid-β (Aβ) and α-SYN pathogenesis. How APOE4 modulates α-SYN aggregation in AD is unclear.

View Article and Find Full Text PDF

Apolipoprotein E () genetic variants have been shown to modify Alzheimer’s disease (AD) risk. We previously identified an variant (3-V236E), named -Jacksonville (-Jac), associated with healthy brain aging and reduced risk for AD and dementia with Lewy bodies (DLB). Herein, we resolved the functional mechanism by which APOE3-Jac reduces APOE aggregation and enhances its lipidation in human brains, as well as in cellular and biochemical assays.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session9jgjs1peeu4hn72v0ahnjf76amtbfoeb): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once