Publications by authors named "Taco Werkman"

Micro Electrode Arrays were used to simultaneously record spontaneous extracellular action potentials from 10 to 30 dopamine neurons in acute brain slices from the lateral Ventral Tegmental Area (VTA) of the rat. The spike train of an individual neuron was used to characterize the firing pattern: firing rate, firing irregularity and oscillation frequency. Functional connectivity between a pair of neurons was quantified by the Paired Phase Consistency (PPC), taking the oscillation frequency as reference.

View Article and Find Full Text PDF

The Ventral Tegmental Area (VTA) contains a considerable population of rhythmically firing dopaminergic neurons, which are influenced by auto-inhibition due to extra-synaptic dopamine release resulting in volume transmission. Using a Multi-Electrode-Array we simultaneously recorded in vitro from multiple VTA dopamine neurons in the rat and studied their mutual interactions. We observed that the dopamine sensitivity (EC50) of the neurons (i.

View Article and Find Full Text PDF

Introduction: Human hippocampal tissue resected from pharmacoresistant epilepsy patients was investigated to study the effect of the antiepileptic drug CBZ (carbamazepine) and was compared to similar experiments in the hippocampus of control rats.

Methods: The molecular layer of the DG (dentate gyrus) of human epileptic tissue and rat nonepileptic tissue was electrically stimulated and the evoked responses were recorded with voltage-sensitive dye imaging to characterize the spatiotemporal properties.

Results: Bath applied CBZ (100 μmol/L) reduced the amplitude of the evoked responses in the human DG, albeit that no clear use-dependent effects were found at frequencies of 8 or 16 Hz.

View Article and Find Full Text PDF

Diacylglycerol lipase (DAGL)-α and -β are enzymes responsible for the biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG). Selective and reversible inhibitors are required to study the function of DAGLs in neuronal cells in an acute and temporal fashion, but they are currently lacking. Here, we describe the identification of a highly selective DAGL inhibitor using structure-guided and a chemoproteomics strategy to characterize the selectivity of the inhibitor in complex proteomes.

View Article and Find Full Text PDF

Activation of the endocannabinoid (eCB) system by exogenous cannabinoids (drug abuse) can alter the physiology of the brain circuits involved in higher-order cognitive functions such as the medial prefrontal cortex (mPFC). A proper balance between excitation and inhibition (E/I balance) is critical for neuronal network oscillations underlying cognitive functions. Since type-1 cannabinoid receptors (CB1Rs), expressed in many brain areas including the mPFC, can modulate excitatory and inhibitory neurotransmission, we aimed to determine whether CB1R activation results in modifications of the E/I balance.

View Article and Find Full Text PDF

The functional presence of type-2 cannabinoid receptors (CB2Rs) in layer II/III pyramidal neurons of the rat medial prefrontal cortex (mPFC) was recently demonstrated. In the present study, we show that the application of the endocannabinoids (eCBs) 2-arachidonoylglycerol (2-AG) and methanandamide [a stable analog of the eCB anandamide (AEA)] can activate CB2Rs of mPFC layer II/III pyramidal neurons, which subsequently induces a Cl(-) current. In addition, we show that action potential (AP) firing evoked by 20-Hz current injections results in an eCB-mediated opening of Cl(-) channels via CB2R activation.

View Article and Find Full Text PDF

Voltage-gated Na(+) channels control neuronal excitability and are the primary target for the majority of anti-epileptic drugs. This study investigates the (sub)cellular expression patterns of three important brain-associated Na(+) channel α subunits: NaV1.1, NaV1.

View Article and Find Full Text PDF

The endocannabinoid (eCB) system is widely expressed throughout the central nervous system (CNS) and the functionality of type-1 cannabinoid receptors in neurons is well documented. In contrast, there is little knowledge about type-2 cannabinoid receptors (CB(2)Rs) in the CNS. Here, we show that CB(2)Rs are located intracellularly in layer II/III pyramidal cells of the rodent medial prefrontal cortex (mPFC) and that their activation results in IP(3)R-dependent opening of Ca(2+)-activated Cl(-) channels.

View Article and Find Full Text PDF

The discovery, synthesis and structure-activity relationship (SAR) of a novel series of cannabinoid 1 (CB(1)) and cannabinoid 2 (CB(2)) receptor ligands are reported. Based on the aminoalkylindole class of cannabinoid receptor agonists, a biphenyl moiety was introduced as novel lipophilic indole 3-acyl substituent in 11-16. Furthermore, the 3-carbonyl tether was replaced with a carboxamide linker in 17-20 and the azaindole (pyrrolopyridine) nucleus was designed as indole bioisostere with improved physicochemical properties in 21-25.

View Article and Find Full Text PDF

This in vitro study investigates and compares the effects of NK3 receptor ligands on the firing rate of rat and guinea pig midbrain dopamine neurons. The findings are discussed in the light of choosing suitable animal models for investigating pharmacological properties of NK3 receptor antagonists, which have been proposed to possess therapeutic activity in neuropsychiatric diseases like e.g.

View Article and Find Full Text PDF

Products of the Doublecortin Like Kinase (DCLK) gene are implicated in cortical migration and hippocampal maturation during embryogenesis. However, one of its splice variants, called CaMK Related Peptide (CARP), is expressed during adulthood in response to neurological stimuli, such as kainic acid-induced seizures and BDNF-LTP. The function of this transcript of the DCLK gene is poorly understood.

View Article and Find Full Text PDF

Purpose: The transient and the persistent Na(+) current play a distinct role in neuronal excitability. Several antiepileptic drugs (AEDs) modulate the transient Na(+) current and block the persistent Na(+) current; both effects contribute to their antiepileptic properties. The interactions of the AEDs carbamazepine (CBZ) and topiramate (TPM) with the persistent and transient Na(+) current were investigated.

View Article and Find Full Text PDF

Aim: To study whether the functional properties of sodium channels, and subsequently the channel modulation by carbamazepine (CBZ) in hippocampal CA1 neurons can be changed after epileptic seizures.

Methods: We used the acutely dissociated hippocampal CA1 pyramidal cells from epilepsy model rats 3 weeks and 3 months respectively after kainate injection, and whole-cell voltage-clamp techniques.

Results: After long-term epileptic seizures, both sodium channel voltage-dependence of activation and steady-state inactivation shifted to more hyperpolarizing potentials, which resulted in the enlarged window current; the membrane density of sodium current decreased and the time constant of recovery from inactivation increased.

View Article and Find Full Text PDF

The role of the 5-HT(2A) receptor in modulating amphetamine-induced inhibition of dopamine neuronal firing in A9 and A10 was investigated in rat midbrain slices. The antipsychotic drugs olanzapine and clozapine more potently reversed the amphetamine-induced inhibition in A10 neurons compared to A9 neurons. Risperidone (0.

View Article and Find Full Text PDF

The antipsychotic drug quetiapine increases the firing rate of dopamine neurons in the substantia nigra and the ventral tegmental area of the rat. In the present study we used an in vitro midbrain slice preparation and found that 3 microM quetiapine increases the firing rate of dopamine neuron in both structures by approximately 30%. The magnitude of the increase was not correlated with the basal firing rate of the dopamine neurons.

View Article and Find Full Text PDF