Ischemic stroke triggers a cascade of pathological events that affect multiple cell types and often lead to incomplete functional recovery. Despite advances in single-cell technologies, the molecular and cellular responses that contribute to long-term post-stroke impairment remain poorly understood. To gain better insight into the underlying mechanisms, we generated a single-cell transcriptomic atlas from distinct brain regions using a mouse model of permanent focal ischemia at one month post-injury.
View Article and Find Full Text PDFThe apolipoprotein E4 () allele represents the major genetic risk factor for Alzheimer's disease (AD). In contrast, is known to lower the AD risk, while is defined as risk neutral. APOE plays a prominent role in the bioenergetic homeostasis of the brain, and early-stage metabolic changes have been detected in the brains of AD patients.
View Article and Find Full Text PDFThis dataset offers images of mouse brains impacted by photothrombotic stroke in the sensorimotor cortex published by Weber et al. NeuroImage (2024). Data is gathered using two primary techniques: (1) whole-brain magnetic resonance imaging (MRI) and (2) 40 µm thick coronal histological sections that undergo immunofluorescence staining with NeuroTrace.
View Article and Find Full Text PDFStem cell therapy is an emerging treatment paradigm for stroke patients with remaining neurological deficits. While allogeneic cell transplants overcome the manufacturing constraints of autologous grafts, they can be rejected by the recipient's immune system, which identifies foreign cells through the human leukocyte antigen (HLA) system. The heterogeneity of HLA molecules in the human population would require a very high number of cell lines, which may still be inadequate for patients with rare genetic HLAs.
View Article and Find Full Text PDFStroke volume is a key determinant of infarct severity and an important metric for evaluating treatments. However, accurate estimation of stroke volume can be challenging, due to the often confined 2-dimensional nature of available data. Here, we introduce a comprehensive semi-automated toolkit to reliably estimate stroke volumes based on (1) whole brains ex-vivo magnetic resonance imaging (MRI) and (2) brain sections that underwent immunofluorescence staining.
View Article and Find Full Text PDFBackground: Stroke remains a leading cause of disability and death worldwide. It has become apparent that inflammation and immune mediators have a pre-dominant role in initial tissue damage and long-term recovery. Still, different immunosuppressed mouse models are necessary in stroke research e.
View Article and Find Full Text PDFStem cell therapy has been shown to improve stroke outcomes in animal models and is currently advancing towards clinical practice. However, uncertainty remains regarding the optimal route for cell delivery to the injured brain. Local intracerebral injections are effective in precisely delivering cells into the stroke cavity but carry the risk of damaging adjacent healthy tissue.
View Article and Find Full Text PDFBackground: Stroke research heavily relies on rodent behavior when assessing underlying disease mechanisms and treatment efficacy. Although functional motor recovery is considered the primary targeted outcome, tests in rodents are still poorly reproducible and often unsuitable for unraveling the complex behavior after injury.
Results: Here, we provide a comprehensive 3D gait analysis of mice after focal cerebral ischemia based on the new deep learning-based software (DeepLabCut, DLC) that only requires basic behavioral equipment.
Background: Currently, there is no regenerative therapy for patients with neurological and neurodegenerative disorders. Cell-therapies have emerged as a potential treatment for numerous brain diseases. Despite recent advances in stem cell technology, major concerns have been raised regarding the feasibility and safety of cell therapies for clinical applications.
View Article and Find Full Text PDFCell therapy holds great promise for regenerative treatment of disease. Despite recent breakthroughs in clinical research, applications of cell therapies to the injured brain have not yielded the desired results. We pinpoint current limitations and suggest five principles to advance stem cell therapies for brain regeneration.
View Article and Find Full Text PDFApolipoprotein E transports lipids and couples metabolism between astrocytes and neurons. The E4 variant (APOE4) affects these functions and represents a genetic predisposition for Alzheimer's disease, but the molecular mechanisms remain elusive. We show that ApoE produces different types of lipoproteins via distinct lipidation pathways.
View Article and Find Full Text PDFCell therapy has long been an emerging treatment paradigm in experimental neurobiology. However, cell transplantation studies often rely on end-point measurements and can therefore only evaluate longitudinal changes of cell migration and survival to a limited extent. This paper provides a reliable, minimally invasive protocol to transplant and longitudinally track neural progenitor cells (NPCs) in the adult mouse brain.
View Article and Find Full Text PDFThe apolipoprotein E4 (APOE4) variant is the strongest genetic risk factor for Alzheimer disease (AD), while the APOE2 allele is protective. A major question is how different APOE genotypes affect the physiology of astrocytes, the main APOE-producing brain cells. Here, we differentiated human APOE-isogenic induced pluripotent stem cells (iPSCs) (APOE4, E3, E2, and APOE knockout [APOE-KO]) to functional "iAstrocytes".
View Article and Find Full Text PDFBackground: Induced pluripotent stem cells (iPSCs) can be differentiated into virtually every desired cell type, offering significant potential for modeling human diseases in vitro. A disadvantage is that iPSC-derived cells represent an immature, which presents a major limitation for modeling age-related diseases such as Alzheimer's disease. Evidence suggests that culturing iPSC neurons in a 3D environment may increase neuronal maturity.
View Article and Find Full Text PDFBlood brain barrier (BBB) damage is an important pathophysiological feature of ischemic stroke which significantly contributes to development of severe brain injury and therefore is an interesting target for therapeutic intervention. A popular permanent occlusion model to study long term recovery following stroke is the photothrombotic model, which so far has not been anatomically characterized for BBB leakage beyond the acute phase. Here, we observed enhanced BBB permeability over a time course of 3 weeks in peri-infarct and core regions of the ischemic cortex.
View Article and Find Full Text PDFFamilial forms of Alzheimer's disease (AD) are caused by mutations in the presenilin genes or in the gene encoding for the amyloid precursor protein (APP). Proteolytic cleavage of APP generates the β-amyloid peptide (Aβ), which aggregates into amyloid plaques, one of the major hallmarks of AD. APP mutations within the Aβ sequence, so-called intra-Aβ mutations, cluster around position E693 of APP, which corresponds to position E22 in the Aβ sequence.
View Article and Find Full Text PDFThe distinct organization of the brain's vasculature ensures the adequate delivery of oxygen and nutrients during development and adulthood. Acute and chronic pathological changes of the vascular system have been implicated in many neurological disorders including stroke and dementia. Here, we describe a fast, automated method that allows the highly reproducible, quantitative assessment of distinct vascular parameters and their changes based on the open source software Fiji (ImageJ).
View Article and Find Full Text PDFTransl Neurodegener
July 2019
Background: Since the discovery of the induced pluripotent stem cell (iPSC) technique more than a decade ago, extensive progress has been made to develop clinically relevant cell culture systems. Alzheimer's disease (AD) is the most common neurodegenerative disease, accounting for approximately two thirds of all cases of dementia. The massively increasing number of affected individuals explains the major interest of research in this disease as well as the strong need for better understanding of disease mechanisms.
View Article and Find Full Text PDFAim: The amyloid precursor protein (APP) is endoproteolytically processed to generate either the neurotoxic beta-amyloid peptide (Aβ) or the secreted ectodomain APP alpha (sAPPα). While neurotrophic properties of sAPPα were suggested in several studies, it is still unclear if and how sAPPα counteracts pathogenic effects of Aβ. Direct comparisons with sAPPβ, produced in the Aβ-generating pathway, are missing in order to determine the role of sAPPα's carbonyl-terminal end in its possible neuroprotective activity.
View Article and Find Full Text PDFMitochondrial dysfunction is a prominent feature of Alzheimer's disease (AD) and increased production of reactive oxygen species (ROS) has been described in postmortem brain samples and animal models. However, these observations were made at a late stage of disease and the inability to examine an early, presymptomatic phase in human neurons impeded our understanding of cause or consequence of mitochondrial dysfunction in AD. We used human induced pluripotent stem cell-derived neuronal cells (iN cells) from sporadic AD (SAD) patients and healthy control subjects (HCS) to show aberrant mitochondrial function in patient-derived cells.
View Article and Find Full Text PDFThe mammalian ShcA adaptor protein p66 is a key regulator of mitochondrial reactive oxygen species (ROS) production and has previously been shown to mediate amyloid β (Aβ)-peptide-induced cytotoxicity in vitro. Moreover, p66 is involved in mammalian longevity and lifespan determination as revealed in the p66 knockout mice, which are characterized by a 30% prolonged lifespan, lower ROS levels and protection from age-related impairment of physical and cognitive performance. In this study, we hypothesized a role for p66 in Aβ-induced toxicity in vivo and investigated the effects of genetic p66 deletion in the PSAPP transgenic mice, an established Alzheimer's disease mouse model of β-amyloidosis.
View Article and Find Full Text PDFDendritic spines represent the major postsynaptic input of excitatory synapses. Loss of spines and changes in their morphology correlate with cognitive impairment in Alzheimer's disease (AD) and are thought to occur early during pathology. Therapeutic intervention at a preclinical stage of AD to modify spine changes might thus be warranted.
View Article and Find Full Text PDFSynaptic loss is one of the major features of Alzheimer's disease (AD) and correlates with the degree of dementia. N-methyl-D-aspartate receptors (NMDARs) have been shown to mediate downstream effects of the β-amyloid peptide (Aβ) in AD models. NMDARs can trigger intracellular cascades via Ca(2+) entry, however, also Ca(2+)-independent (metabotropic) functions of NMDARs have been described.
View Article and Find Full Text PDF