Publications by authors named "Tacconelli S"

Inflammation plays a critical role in the pathogenesis of various diseases by promoting the acquisition of new functional traits by different cell types. Shared risk factors between cardiovascular disease and cancer, including smoking, obesity, diabetes, high-fat diet, low physical activity, and alcohol consumption, contribute to inflammation linked to platelet activation. Platelets contribute to an inflammatory state by activating various normal cells, such as fibroblasts, immune cells, and vascular cells.

View Article and Find Full Text PDF

Background: PPARα and cyclooxygenase (COX)-2 are overexpressed in certain types of cancer. Thus, developing a dual inhibitor that targets both could be more effective as an anticancer agent than single inhibitors. We have previously shown that an analog of the bezafibrate named AA520 is a PPARα antagonist.

View Article and Find Full Text PDF

Many drugs can act on multiple targets or disease pathways, regardless of their original purpose. Drug repurposing involves reevaluating existing compounds for new medical uses. This can include repositioning approved drugs, redeveloping unapproved drugs, or repurposing any chemical, nutraceutical, or biotherapeutic product for new applications.

View Article and Find Full Text PDF

Coffee is one of the most widely consumed beverages in the world due to its unique aroma and psychostimulant effects, mainly due to the presence of caffeine. In recent years, experimental evidence has shown that the moderate consumption of coffee (3/4 cups per day) is safe and beneficial to human health, revealing protective effects against numerous chronic metabolic diseases such as diabetes, cardiovascular, neurodegenerative, and hepatic diseases. This review focuses on two of coffee's main bioactive compounds, i.

View Article and Find Full Text PDF

New insights have been gained on the role of platelets beyond thrombosis. Platelets can accumulate in damaged and inflamed tissues, acting as a sentinel to detect and repair tissue damage. However, by releasing several soluble factors, including thromboxane A (TXA) and 12-hydroxyeicosatetraenoic acid, and extracellular vesicles (EVs), platelets can activate vascular cells, stromal, such as fibroblasts, immune cells, and cancer cells, leading to atherosclerosis, vascular restenosis, tissue fibrosis, and tumor metastasis.

View Article and Find Full Text PDF

Low-dose aspirin's mechanism of action for preventing colorectal cancer (CRC) is still debated, and the optimal dose remains uncertain. We aimed to optimize the aspirin dose for cancer prevention in CRC patients through deep phenotyping using innovative biomarkers for aspirin's action. We conducted a Phase II, open-label clinical trial in 34 CRC patients of both sexes randomized to receive enteric-coated aspirin 100 mg/d, 100 mg/BID, or 300 mg/d for 3 ± 1 weeks.

View Article and Find Full Text PDF

Cyclooxygenase (COX) isozymes, i.e., COX-1 and COX-2, are encoded by separate genes and are involved in the generation of the same products, prostaglandin (PG)G and PGH from arachidonic acid (AA) by the COX and peroxidase activities of the enzymes, respectively.

View Article and Find Full Text PDF

Background: The results of Aspirin prevention of colorectal adenomas in patients with familial adenomatous polyposis (FAP) are controversial.

Methods: We conducted a biomarker-based clinical study in eight FAP patients treated with enteric-coated low-dose Aspirin (100 mg daily for three months) to explore whether the drug targets mainly platelet cyclooxygenase (COX)-1 or affects extraplatelet cellular sources expressing COX-isozymes and/or off-target effects in colorectal adenomas.

Results: In FAP patients, low-dose Aspirin-acetylated platelet COX-1 at Serine529 (>70%) was associated with an almost complete inhibition of platelet thromboxane (TX) B generation ex vivo (serum TXB).

View Article and Find Full Text PDF

Background: Platelet-cancer cell interactions modulate tumor metastasis and thrombosis in cancer. Platelet-derived extracellular vesicles (EVs) can contribute to these outcomes.

Methods: We characterized the medium-sized EVs (mEVs) released by thrombin-stimulated platelets of colorectal cancer (CRC) patients and healthy subjects (HS) on the capacity to induce epithelial-mesenchymal transition (EMT)-related genes and cyclooxygenase (COX)-2(), and thromboxane (TX)B production in cocultures with four colorectal cancer cell lines.

View Article and Find Full Text PDF

Aspirin(acetylsalicylic acid, ASA) is recommended for the secondary prevention of atherothrombotic events and has shown anticancer effects. The current enteric-coated drug formulation may reduce aspirin bioavailability. Liquid formulations could improve aspirin pharmacokinetics and pharmacodynamics.

View Article and Find Full Text PDF

Clinical and experimental evidence sustain the role of cyclooxygenase (COX)-1 in intestinal tumorigenesis. However, the cell type expressing the enzyme involved and molecular mechanism(s) have not been clarified yet. We aimed to elucidate the role of platelet COX-1 (the target of low-dose aspirin in humans) in intestinal tumorigenesis of Apc mice, considered a clinically relevant model.

View Article and Find Full Text PDF

Platelet-type lipoxygenase (pl12-LOX), encoded by ALOX12, catalyzes the production of the lipid mediator 12S-hydroperoxyeicosa-5,8,10,14-tetraenoic acid (12S-HpETE), which is quickly reduced by cellular peroxidases to form 12(S)-hydroxy-5,8,10,14-eicosatetraenoic acid (12S-HETE). Platelets express high levels of pl12-LOX and generate considerable amounts of 12S-HETE from arachidonic acid (AA; C20:4, n-6). The development of sensitive chiral liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods has allowed the accurate quantification of 12S-HETE in biological samples.

View Article and Find Full Text PDF
Article Synopsis
  • Colorectal cancer (CRC) and hepatocellular carcinoma (HCC) are linked to chronic inflammation, emphasizing the need for noninvasive biomarkers to monitor at-risk populations and disease progression.
  • Activated platelets contribute to this inflammation and fibrosis, and low-dose aspirin may lower the incidence of CRC and liver cancer while providing antifibrotic benefits in conditions like nonalcoholic fatty liver disease (NAFLD).
  • Selective COX-2 inhibitors can target tumor inflammation but risk cardiovascular complications, highlighting the need for better strategies in utilizing anti-inflammatory treatments for cancer prevention.
View Article and Find Full Text PDF

Metastasis requires that cancer cells survive in the circulation, colonize distant organs, and grow. Despite platelets being central contributors to hemostasis, leukocyte trafficking during inflammation, and vessel stability maintenance, there is significant evidence to support their essential role in supporting metastasis through different mechanisms. In addition to their direct interaction with cancer cells, thus forming heteroaggregates such as leukocytes, platelets release molecules that are necessary to promote a disseminating phenotype in cancer cells via the induction of an epithelial-mesenchymal-like transition.

View Article and Find Full Text PDF

Platelets promote tumor metastasis by inducing promalignant phenotypes in cancer cells and directly contributing to cancer-related thrombotic complications. Platelet-derived extracellular vesicles (EVs) can promote epithelial-mesenchymal transition (EMT) in cancer cells, which confers high-grade malignancy. 12S-hydroxyeicosatetraenoic acid (12-HETE) generated by platelet-type 12-lipoxygenase (12-LOX) is considered a key modulator of cancer metastasis through unknown mechanisms.

View Article and Find Full Text PDF

Aberrantly expressed fused in sarcoma (FUS) is a hallmark of FUS-related amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Wildtype FUS localises to synapses and interacts with mitochondrial proteins while mutations have been shown to cause to pathological changes affecting mitochondria, synapses and the neuromuscular junction (NMJ). This indicates a crucial physiological role for FUS in regulating synaptic and mitochondrial function that is currently poorly understood.

View Article and Find Full Text PDF

Enhanced platelet activation has been reported in patients with essential hypertension and heart failure. The possible contribution of platelet-derived thromboxane (TX)A in their pathophysiology remains unclear. We investigated the systemic TXA biosynthesis in vivo and gene expression of its receptor TP in 22 essential hypertension patients and a mouse model of salt-sensitive hypertension.

View Article and Find Full Text PDF

Background: Ion channels are transmembrane proteins that play important roles in cell function regulation modulating ionic cell permeability. In megakaryocytes and platelets, regulated ion flows have been demonstrated to modulate platelet production and function. However, a relatively limited characterization of ion channel expression and function is available in the human megakaryocyte-platelet lineage.

View Article and Find Full Text PDF

Platelets contribute to several types of cancer through plenty of mechanisms. Upon activation, platelets release many molecules, including growth and angiogenic factors, lipids, and extracellular vesicles, and activate numerous cell types, including vascular and immune cells, fibroblasts, and cancer cells. Hence, platelets are a crucial component of cell-cell communication.

View Article and Find Full Text PDF

Neointima hyperplasia is a crucial component of restenosis after coronary angioplasty. We have hypothesized that enhanced generation of platelet-derived thromboxane (TX)A in response to vascular damage plays a critical role in neointimal hyperplasia and that antiplatelet agents may mitigate it. In cocultures of human platelets and coronary artery smooth muscle cells (CASMC), we found that platelets induced morphologic changes and enhanced the migration of CASMC.

View Article and Find Full Text PDF

Platelet 12-lipoxygenase(p-12-LOX) is highly expressed in human platelets, and the development of p-12-LOX inhibitors has the potential to be a novel antithrombotic tool by inhibiting thrombosis without prolonging hemostasis. A chiral liquid chromatography-mass spectrometry(LC-MS/MS) method was used to assess the impact of three commercially available LOX inhibitors[esculetin(6,7-dihydroxycoumarin), ML-355(N-2-benzothiazolyl-4-[[(2-hydroxy-3-methoxyphenyl)methyl]amino]-benzenesulfonamide), CDC(cinnamyl-3,4-dihydroxy-α-cyanocinnamate) and acetylsalicylic acid(ASA; a cyclooxygenase-1 inhibitor) on the generation of prostanoids and HETEs(hydroxyeicosatetraenoic acids) in human whole blood allowed to clot for 1 h at 37 °C(serum), platelet-rich plasma(PRP) stimulated with collagen or TRAP-6(a peptide activating thrombin receptor) and washed platelets. In serum, ML-355 did not affect eicosanoid generation, while CDC caused an incomplete reduction of 12S-HETE levels; esculetin inhibited both 12S-HETE and thromboxane(TX)B production; ASA selectively affected TXB production.

View Article and Find Full Text PDF

The most recognized mechanism of aspirin (acetylsalicylic acid, ASA) action, at therapeutic dosing, is the inhibition of prostanoid biosynthesis through the acetylation of cyclooxygenase (COX)-isozymes (COX-1 at serine-529 and COX-2 at serine-516). Whether aspirin, also when given at the low-doses recommended for cardiovascular prevention, reduces the risk of colorectal cancer by affecting COX-2 activity in colorectal adenomatous lesions is still debated. We aimed to develop a direct biomarker of aspirin action on COX-2 by assessing the extent of acetylation of COX-2 at serine-516 using the AQUA strategy, enabling absolute protein quantitation by liquid chromatography-mass spectrometry.

View Article and Find Full Text PDF

Rationale: The development of inhibitors of microsomal prostaglandin (PG)E synthase-1 (mPGES-1) was driven by the promise of attaining antiinflammatory agents with a safe cardiovascular profile because of the possible diversion of the accumulated substrate, PGH, towards prostacyclin (PGI).

Objectives: We studied the effect of the human mPGES-1 inhibitor, AF3485 (a benzamide derivative) on prostanoid biosynthesis in human whole blood . To characterize possible off-target effects of the compound, we evaluated: i)the impact of its administration on the systemic biosynthesis of prostanoids in a model of complete Freund's adjuvant (CFA)-induced monoarthritis in rats; ii) the effects on cyclooxygenase (COX)-2 expression and the biosynthesis of prostanoids in human monocytes and human umbilical vein endothelial cells (HUVECs) .

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is associated with an increased risk for thromboembolism, platelet activation, and abnormalities in platelet number and size. In colitis, platelets can extravasate into the colonic interstitium. We generated a mouse with a specific deletion of cyclooxygenase (COX)-1 in megakaryocytes/platelets [(COX-1 conditional knockout (cKO)] to clarify the role of platelet activation in the development of inflammation and fibrosis in dextran sodium sulfate (DSS)-induced colitis.

View Article and Find Full Text PDF