Publications by authors named "Tabor R"

Cable bacteria are a unique type of filamentous microorganism that can grow up to centimetres long and are capable of long-distance electron transport over their entire lengths. Due to their unique metabolism and conductive capacities, the study of cable bacteria has required technical innovations, both in adapting existing techniques and developing entirely new ones. This review discusses the existing methods used to study eight distinct aspects of cable bacteria research, including the challenges of culturing them in laboratory conditions, performing physical and biochemical extractions, and analysing the conductive mechanism.

View Article and Find Full Text PDF

Cable bacteria are long, multicellular bacteria that conduct electrical currents over centimetre distances within sediment to support their metabolism. Recent studies have shown their potential for extracellular electron transport (EET), allowing the possibility to donate electrons to solid electrodes and potentially enabling electrical interactions with other microbes. However, the mechanisms and capabilities of their EET, and their potential to interact electronically with other materials in their environment has not been explored.

View Article and Find Full Text PDF

Anisotropic polydopamine nanobowls (PDA NBs) show significant promise in biomedicine, distinguished by their unique optical properties and superior cellular uptake compared to spherical nanoparticles. This study presents a novel approach for creating multistimuli-activated PDA NB-armored emulsions, encapsulating perfluorohexane (NB-H) and perfluoropentane (NB-P) cores, with applications in controlled delivery and ultrasound imaging. Thermal and photothermal activation induced distinct responses in the emulsions, as evidenced by optical microscopy and thermogravimetric analysis.

View Article and Find Full Text PDF

Thrombosis-related cardiovascular diseases remain the leading global cause of mortality and morbidity. In this study, we present a pioneering approach in the field of nanobiotechnology, with a focus on clinical translation, aimed at advancing early diagnosis and enhancing treatment options for thrombotic disorders. We introduce the fabrication of Platelet Membrane-Derived Bubbles (PMBs), which exhibit distinctive characteristics compared to conventional nanoparticles.

View Article and Find Full Text PDF

A robust route to produce poly(methyl methacrylate) (pMMA) hybrid latex particles (radius ∼250 nm) that are selectively "armored" with silica nanoparticles (radius 12.5 nm) through addition of vinyltriethoxysilane was previously shown ( 2018, 528, 289-300).Depending on synthesis conditions, the extent of nanoparticle attachment could be varied; however, the mechanism behind this attachment during latex growth remained unclear.

View Article and Find Full Text PDF

Utilizing cell membranes from diverse cell types for biointerfacing has demonstrated significant advantages in enhancing colloidal stability and incorporating biological properties, tailored specifically for various biomedical applications. However, the structures of these materials, particularly emulsions interfaced with red blood cell (RBC) or platelet (PLT) membranes, remain an underexplored area. This study systematically employs small- and ultra-small-angle neutron scattering (SANS and USANS) with contrast variation to investigate the structure of emulsions containing perfluorohexane within RBC (RBC/PFH) and PLT membranes (PLT/PFH).

View Article and Find Full Text PDF

Ether-linked surfactants are widely used in formulations such as liquid soaps, but despite their ubiquity, it is unclear how -ethylene glycol linkers in surfactants, such as sodium lauryl -(ethylene glycol) sulfate (SLEnS), influence micellar packing in the presence of NaCl. In the present work, we probe the structure and hydration of ether linkers in micelles comprising monodisperse SLEnS surfactants using contrast-variation small-angle neutron scattering (CV-SANS) and small-angle X-ray scattering (SAXS). Using SAXS, changes in micellar structure were observed for SLEnS ( = 1, 2, or 3) arising from the extent of ethoxylation.

View Article and Find Full Text PDF

Complex fluids encompass a significant proportion of the materials that we use today from feedstocks such as cellulose fibre dispersions, materials undergoing processing or formulation, through to consumer end products such as shampoo. Such systems exhibit intricate behaviour due to their composition and microstructure, particularly when analysing their texture and response to flow (rheology). In particular, these fluids when flowing may undergo transitions in their nano- to microstructure, potentially aligning with flow fields, breaking and reassembling or reforming, or entirely changing phase.

View Article and Find Full Text PDF
Article Synopsis
  • - The study examines how polydopamine-shelled perfluorocarbon emulsion droplets can transition into microbubbles when exposed to near-infrared (NIR) light, using advanced imaging and scattering techniques.
  • - Findings reveal that the transition rates depend on the type of perfluorocarbon and droplet size, with perfluoropentane droplets changing rapidly while perfluorohexane droplets are more resistant due to their higher boiling point.
  • - Smaller droplets with a uniform size distribution are less likely to undergo phase changes when activated by NIR, which helps inform the development of nanomedicine applications for targeted drug delivery and therapies.
View Article and Find Full Text PDF

Surfactants provide detergency, foaming, and texture in personal care formulations, yet the micellization of typical industrial primary and cosurfactants is not well understood, particularly in light of the polydisperse nature of commercial surfactants. Synergistic interactions are hypothesized to drive the formation of elongated wormlike self-assemblies in these mixed surfactant systems. Small-angle neutron scattering, rheology, and pendant drop tensiometry are used to examine surface adsorption, viscoelasticity, and self-assembly structure for wormlike micellar formulations comprising cocoamidopropyl betaine, and its two major components laurylamidopropyl betaine and oleylamidopropyl betaine, with sodium alkyl ethoxy sulfates.

View Article and Find Full Text PDF

Hypothesis: Interactions across incredibly thin layers of fluids, known as thin films, underpin many important processes involving colloids, such as wetting-dewetting phenomena. Often in these systems, thin films are composed of complex fluids that contain dispersed components, such as spherical micelles, giving rise to oscillatory structural forces due to preferential layering under confinement. Modelling of thin film dynamics involving Derjaguin-Landau-Verwey-Overbeek (DLVO) type forces has been widely reported using the Stokes-Reynolds-Young-Laplace (SRYL) model, and we hypothesize that this theory can be extended to a concentrated micellar system by including an oscillatory structural force term in the disjoining pressure.

View Article and Find Full Text PDF
Article Synopsis
  • The behavior of surfactants in solution is influenced by both steric (shape) and electrostatic (charge) interactions, particularly when incorporating functional groups like amides, which can significantly affect their surface activity and self-assembly.
  • A series of betaine surfactants were synthesized with varying tail lengths and an amidopropyl linker to investigate how this functional group affects surfactant properties; various experimental techniques were employed, including pendant drop tensiometry and small-angle neutron scattering.
  • Findings showed that while the amidopropyl linker had minimal impact on the surfactants' ability to aggregate, it did raise the Krafft temperature, and the surfactants' aggregate shapes could be modified by chaotropic salts,
View Article and Find Full Text PDF

Standard optical imaging is diffraction-limited and lacks the resolving power to visualize many of the organelles and proteins found within the cell. The advent of super-resolution techniques overcame this barrier, enabling observation of subcellular structures down to tens of nanometers in size; however these techniques require or are typically applied to fixed samples. This raises the question of how well a fixed-cell image represents the system prior to fixation.

View Article and Find Full Text PDF

Color patterns in nonavian reptiles are beautifully diverse, but little is known about the genetics and development of these patterns. Here, we investigated color patterning in pet ball pythons (Python regius), which have been bred to show color phenotypes that differ dramatically from the wildtype form. We report that several color phenotypes in pet animals are associated with putative loss-of-function variants in the gene encoding endothelin receptor EDNRB1: (1) frameshift variants in EDNRB1 are associated with conversion of the normal mottled color pattern to skin that is almost fully white, (2) missense variants affecting conserved sites of the EDNRB1 protein are associated with dorsal, longitudinal stripes, and (3) substitutions at EDNRB1 splice donors are associated with subtle changes in patterning compared to wildtype.

View Article and Find Full Text PDF

Microglia-mediated neuroinflammation is commonly associated with neurodegeneration and has been implicated in several neurological disorders, such as Alzheimer's disease and Parkinson's disease. Therefore, it is crucial to develop a detailed understanding of the interaction of potential nanocarriers with microglial cells to efficiently deliver anti-inflammatory molecules. In this study, we applied brush polymers as a modular platform to systematically investigate their association with murine (BV-2) and human (HMC3) microglial cell lines in the presence and absence of the pro-inflammatory inducer lipopolysaccharide (LPS) using flow cytometry.

View Article and Find Full Text PDF

Background: In Syria, disruption to water and sanitation systems, together with poor access to vaccination, forced displacement and overcrowding contribute to increases in waterborne diseases (WBDs). The aim of this study is to perform a spatiotemporal analysis to investigate potential associations between interruptions to water, sanitation, and hygiene (WASH) and WBDs in northeast Syria using data collected by the Early Warning Alert and Response Network (EWARN) from Deir-ez-Zor, Raqqa, Hassakeh and parts of Aleppo governorates.

Methods: We reviewed the literature databases of MEDLINE and Google Scholar and the updates of ReliefWeb to obtain information on acute disruptions and attacks against water infrastructure in northeast Syria between January 2015 and June 2021.

View Article and Find Full Text PDF
Article Synopsis
  • Mesoporous polydopamine (PDA) nanobowls can be synthesized using a one-pot method with specific materials, leading to the development of new anisotropic nanoparticles, including polynorepinephrine (PNE) and polyepinephrine (PEP).
  • The study modifies the original synthesis approach by experimenting with different oil phases and ammonia concentrations to create various nanoparticle shapes, such as "nano-golf balls" and mesoporous nanobowls.
  • Results from photoacoustic imaging experiments indicate that mesoporous nanobowls show significantly enhanced imaging capabilities compared to other shapes, with a performance hierarchy of PDA > PNE > PEP, highlighting the potential of shape manipulation in improving these nanomaterials
View Article and Find Full Text PDF
Article Synopsis
  • Research on polynorepinephrine (PNE) is limited compared to polydopamine (PDA), despite PNE's similar ability to self-polymerize and create versatile coatings.
  • PNE provides a thinner, smoother surface that improves resistance to biofouling, enhances cell adhesion, and increases hydrophilicity and biomolecule immobilization.
  • PNE also demonstrates potential in biosensing applications owing to its unique chemical structure that allows for effective electron transfer and molecular recognition.
View Article and Find Full Text PDF

Increasing demand for copper resources, accompanied by increasing pollution, has resulted in an urgent need for effective materials for copper binding and extraction. Polyethylenimine (PEI) is one of the strongest copper-chelating agents but is not suitable directly (as is) for most applications due to its high solubility in water. PEI-based composite materials show potential as efficient and practical alternatives.

View Article and Find Full Text PDF

Correlative imaging methods can provide greater information for investigations of cellular ultra-structure, with separate analysis methods complementing each other's strengths and covering for deficiencies. Here we present a method for correlative applications of super resolution and atomic force microscopies, optimising the sample preparation for correlative imaging of the cellular cytoskeleton in COS-7 cells. This optimisation determined the order of permeabilisation and fixation, the concentration of Triton X-100 surfactant used and time required for sufficient removal of the cellular membrane while maintaining the microtubule network.

View Article and Find Full Text PDF

Azobenzene-containing surfactants (azo-surfactants) have garnered significant attention for their use in generating photoresponsive foams, interfaces, and colloidal systems. The photoresponsive behavior of azo-surfactants is driven by the conformational and electronic changes that occur when the azobenzene chromophore undergoes light-induced ⇌ isomerization. Effective design of surfactants and targeting of their properties requires a robust understanding of how the azobenzene functionality interacts with surfactant structure and influences overall surfactant behavior.

View Article and Find Full Text PDF

Ultrasound has important applications, predominantly in the field of diagnostic imaging. Presently, colloidal systems such as microbubbles, phase-change emulsion droplets and particle systems with acoustic properties and multiresponsiveness are being developed to address typical issues faced when using commercial ultrasound contrast agents, and to extend the utility of such systems to targeted drug delivery and multimodal imaging. Current technologies and increasing research data on the chemistry, physics and materials science of new colloidal systems are also leading to the development of more complex, novel and application-specific colloidal assemblies with ultrasound contrast enhancement and other properties, which could be beneficial for multiple biomedical applications, especially imaging-guided treatments.

View Article and Find Full Text PDF

The current work features process parameters for the ultrasound (25 kHz)-assisted fabrication of polydopamine-shelled perfluorocarbon (PDA/PFC) emulsion droplets with bimodal (modes at 100-600 nm and 1-6 µm) and unimodal (200-600 nm) size distributions. Initial screening of these materials revealed that only PDA/PFC emulsion droplets with bimodal distributions showed photoacoustic signal enhancement due to large size of their optically absorbing PDA shells. Performance of this particular type of emulsion droplets as photoacoustic agents were evaluated in Intralipid®-India ink media, mimicking the optical scattering and absorbanceof various tissuetypes.

View Article and Find Full Text PDF

The mechanical properties of crystals are controlled by the translational symmetry of their structures. But for glasses with a disordered structure, the link between the symmetry of local particle arrangements and stability is not well established. In this contribution, we provide experimental verification that the centrosymmetry of nearest-neighbor polyhedra in a glass strongly correlates with the local mechanical stability.

View Article and Find Full Text PDF

From atomic force microscopy (AFM) experiments, we report a new phenomenon in which the dissolution rate of fused silica is enhanced by more than 5 orders of magnitude by simply pressing a second, dissimilar surface against it and oscillating the contact pressure at low kHz frequencies in deionized water. The silica dissolution rate enhancement was found to exhibit a strong dependence on the pressure oscillation frequency consistent with a resonance effect. This harmonic enhancement of the silica dissolution rate was only observed at asymmetric material interfaces (e.

View Article and Find Full Text PDF