Publications by authors named "Taboga O"

Article Synopsis
  • - Chikungunya fever, caused by the chikungunya virus (CHIKV), leads to acute arthritis that may develop into chronic pain, with a recently approved vaccine not widely accessible in endemic areas.
  • - A new vectored vaccine using baculovirus technology shows promise by presenting CHIKV proteins E1 and E2 on its surface, eliciting strong immune responses in tested mice, including the production of neutralizing antibodies.
  • - Mice receiving two doses of this baculovirus-based vaccine were fully protected from CHIKV infection, highlighting its potential as an effective vaccine platform against this re-emerging disease amidst its surge in cases, particularly in the Americas.
View Article and Find Full Text PDF

Bovine tuberculosis (bTB) represents a threat to livestock production. Mycobacterium bovis is the main causative agent of bTB and a pathogen capable of infecting wildlife and humans. Eradication programs based on surveillance in slaughterhouses with mandatory testing and culling of reactive cattle have failed to eradicate bTB in many regions worldwide.

View Article and Find Full Text PDF

The occlusion bodies of Autographa californica multiple nucleopolyhedrovirus are proteinaceous formations with significant biotechnological potential owing to their capacity to integrate foreign proteins through fusion with polyhedrin, their primary component. However, the strategy for successful heterologous protein inclusion still requires further refinement. In this study, we conducted a comparative assessment of various conditions to achieve the embedding of recombinant proteins within polyhedra.

View Article and Find Full Text PDF

Chagas' is a neglected disease caused by the eukaryotic kinetoplastid parasite, Currently, approximately 8 million people are infected worldwide, most of whom are in the chronic phase of the disease, which involves cardiac, digestive, or neurologic manifestations. There is an urgent need for a vaccine because treatments are only effective in the initial phase of infection, which is generally underdiagnosed. The selection and combination of antigens, adjuvants, and delivery platforms for vaccine formulations should be designed to trigger mixed humoral and cellular immune responses, considering that has a complex life cycle with both intracellular and bloodstream circulating parasite stages in vertebrate hosts.

View Article and Find Full Text PDF

Baculoviruses have shown great potential as gene delivery vectors in mammals, although their effectiveness in transferring genes varies across different cell lines. A widely employed strategy to improve transduction efficiency is the pseudotyping of viral vectors. In this study, we aimed to develop a stable Sf9 insect cell line that inducibly expresses the G-protein of the vesicular stomatitis virus to pseudotype budded baculoviruses.

View Article and Find Full Text PDF

Poxins are poxviral proteins that act by degrading 2´3´-cGAMP, a key molecule of cGAS-STING axis that drives and amplifies the antiviral response. Previous works have described some poxin homologous among lepidopteran and baculoviral genes. In particular, P26, a poxin homologous from AcMNPV retains the 2´3´-cGAMP degradation activity in vitro.

View Article and Find Full Text PDF

"Smart" nanogels are an attractive tool for the development of new strategies of immunization in veterinary medicine. Here, we reported the synthesis and physicochemical characterization of thermoresponsive nanogels based on poly(N-isopropylacrylamide) (pNIPAM) and theirin vitro, ex vivoand in vivo (mice model) performance. Smart nanogels of ca.

View Article and Find Full Text PDF

Although the baculovirus Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) infects lepidopteran invertebrates as natural hosts, represents an efficient vector for vaccine development. Baculovirus surface display induces strong humoral responses against viruses and parasites. A novel strategy based on capsid display carrying foreign antigens in the AcMNPV particle further improved the immune response by eliciting CD8 T cell activation.

View Article and Find Full Text PDF

The epidemiological surveillance of SARS-CoV-2 by means of whole-genome sequencing has revealed the emergence and co-existence of multiple viral lineages or subtypes throughout the world. Moreover, it has been shown that several subtypes of this virus display particular phenotypes, such as increased transmissibility or reduced susceptibility to neutralizing antibodies, leading to the denomination of Variants of Interest (VOI) or Variants of Concern (VOC). Thus, subtyping of SARS-CoV-2 is a crucial step for the surveillance of this pathogen.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the use of baculovirus AcMNPV as a vaccine vector to induce immune responses in swine, particularly focusing on its ability to generate interferon (IFN) and combat viral infections.
  • AcMNPV effectively stimulated IFN-α production in porcine blood cells and demonstrated antiviral activity against viruses like FMDV and VSV in both test tubes and infected piglets.
  • The research found that modifying AcMNPV with the VSV-G protein enhanced IFN-α production, suggesting that AcMNPV could be optimized for better effects in antiviral strategies against swine viruses.
View Article and Find Full Text PDF

Serology testing for COVID-19 is important in evaluating active immune response against SARS-CoV-2, studying the antibody kinetics, and monitoring reinfections with genetic variants and new virus strains, in particular, the duration of antibodies in virus-exposed individuals and vaccine-mediated immunity. In this study, recombinant S protein of SARS-CoV-2 was expressed in Rachiplusia nu, an important agronomic plague. One gram of insect larvae produces an amount of S protein sufficient for 150 determinations in the ELISA method herein developed.

View Article and Find Full Text PDF

Pestivirus envelope protein E2 is crucial to virus infection and accomplishes virus-receptor interaction during entry. However, mapping of E2 residues mediating these interactions has remained unexplored. In this study, to investigate the structure-function relationship for a β-hairpin motif exposed to the solvent in the crystal structure of bovine viral diarrhea virus (BVDV) E2, we designed two amino acidic substitutions that result in a change of electrostatic potential.

View Article and Find Full Text PDF

RNA interference (RNAi) is a well-conserved mechanism in eukaryotic cells that directs post-transcriptional gene silencing through small RNA molecules. RNAi has been proposed as an alternative approach for rapid and specific control of viruses including foot-and-mouth disease virus (FMDV), the causative agent of a devastating animal disease with high economic impact. The aim of this work was to assess the antiviral activity of different small RNA shuttles targeting the FMDV RNA-dependent RNA polymerase coding sequence (3D).

View Article and Find Full Text PDF

The baculovirus multiple nucleopolyhedrovirus is an insect virus with a circular double-stranded DNA genome, which, among other multiple biotechnological applications, is used as an expression vector for gene delivery in mammalian cells. Nevertheless, the nonspecific immune response triggered by viral vectors often suppresses transgene expression. To understand the mechanisms involved in that response, in the present study, we studied the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway by using two approaches: the genetic edition through CRISPR/Cas9 technology of genes encoding STING or cGAS in NIH/3T3 murine fibroblasts and the infection of HEK293 and HEK293 T human epithelial cells, deficient in cGAS and in cGAS and STING expression, respectively.

View Article and Find Full Text PDF

Foot-and-mouth disease is a viral illness that affects cloven-hoofed animals causing serious economic losses. Inactivated vaccines against its causative agent, foot-and-mouth disease virus (FMDV), require approximately seven days to induce protection. Therefore, antiviral strategies are needed to provide earlier protection and to stop the spread of this highly contagious virus during outbreak situations.

View Article and Find Full Text PDF

Bovine tuberculosis (bTB) is a disease produced by Mycobacterium bovis that affects livestock, wild animals, and humans. The classical diagnostic method to detect bTB is measuring the response induced with the intradermal injection of purified protein derivative of M. bovis (PPDb).

View Article and Find Full Text PDF

Leishmaniasis is caused by several species of protozoan parasites of the genus Leishmania and represents an important global health problem. Leishmania braziliensis in particular is responsible of cutaneous and mucocutaneous forms of this parasitosis, with prevalence in Latin America. In the present work, we describe in L.

View Article and Find Full Text PDF

Cyclodextrin glycosyltransferases (CGTases) are important enzymes in the biotechnology field because they catalyze starch conversion into cyclodextrins and linear oligosaccharides, which are used in food, pharmaceutical and cosmetic industries. The CGTases are classified according to their product specificity in α-, β-, α/β- and γ-CGTases. As molecular markers are the preferred tool for bacterial identification, we employed six molecular markers (16S rRNA, dnaK, gyrB, recA, rpoB and tufA) to test the identification of a CGTase-producing bacterial strain (DF 9R) in a phylogenetic context.

View Article and Find Full Text PDF

Cyclodextrin glycosyltransferases (CGTases) are bacterial enzymes that catalyze starch conversion into cyclodextrins, which have several biotechnological applications including solubilization of hydrophobic compounds, masking of unpleasant odors and flavors in pharmaceutical preparations, and removal of cholesterol from food. Additionally, CGTases produce maltooligosaccharides, which are linear molecules with potential benefits for human health. Current research efforts are concentrated in the development of engineered enzymes with improved yield and/or particular product specificity.

View Article and Find Full Text PDF

The Autographa californica multiple nucleopolyhedrovirus (AcMNPV) ac12 gene, which is conserved in ten other baculovirus, codes a predicted 217 amino acid protein of unknown function. In this study, we investigated the role of ac12 during baculovirus infection, by generating an ac12 knockout virus. The transfection of the recombinant genome in insect cells resulted in unaltered viral dispersion and occlusion body production when compared to the control bacmid.

View Article and Find Full Text PDF

Here, we developed a diagnostic ELISA for foot-and-mouth disease using recombinant occlusion bodies (rOBs) of baculovirus. We fused Δ3AB, a polypeptide derived from non-structural proteins of foot-and-mouth disease virus, to polyhedrin (POLH), the major constituent of OBs, under promoter. To further assess the most convenient strategy to improve yields, we designed two recombinant baculoviruses, vPOLH and vPOLH.

View Article and Find Full Text PDF

The baculovirus Autographa californica multiple nuclear polyhedrosis virus (AcMNPV) infects lepidopteran invertebrates as natural hosts, although it also has been used as display vector for vaccine development. In this work, we evaluated the effectiveness of repetitive doses of AcMNPV-based vectors on the cytotoxic immune response specific to the capsid-displayed heterologous antigen ovalbumin (OVA). Our results demonstrate that baculovirus vectors induce a boosting effect in the cytotoxic immune response to OVA, making possible to recover the levels obtained in the primary response.

View Article and Find Full Text PDF

The ability of Baculoviruses to hyper-express very late genes as polyhedrin, the major component of occlusion bodies (OBs) or polyhedra, has allowed the evolution of a system of great utility for biotechnology. The main function of polyhedra in nature is to protect Baculovirus in the environment. The possibility of incorporating foreign proteins into the crystal by fusing them to polyhedrin (POLH) opened novel potential biotechnological uses.

View Article and Find Full Text PDF

Baculoviruses are large DNA virus of insects principally employed in recombinant protein expression. Its ability to form occlusion bodies (OBs), which are composed mainly of polyhedrin protein (POLH), makes them biotechnologically attractive, as these crystals (polyhedra) can incorporate foreign peptides and can be easily isolated. On the other hand, peptide microarrays allow rapid and inexpensive high-throughput serological screening of new candidates to be incorporated to OBs.

View Article and Find Full Text PDF