The oxidation of trimethylthiourea (TMTU) by acidic bromate has been studied. The reaction mimics the dynamics observed in the oxidation of unsubstituted thiourea by bromate with an induction period before formation of bromine. The stoichiometry of the reaction was determined to be 4:3, thus 4BrO(3)- + 3R(1)R(2)C=S+ 3H(2)O --> 4Br- + 3R(1)R(2)C=O + 3SO(4)(2-) + 6H+.
View Article and Find Full Text PDFChemical waves are initiated in an excitable medium by resonance with local periodic forcing of the excitability. Experiments are carried out with a photosensitive Belousov-Zhabotinsky medium, in which the excitability is varied according to the intensity of the imposed illumination. Complex resonance patterns are exhibited as a function of the amplitude and frequency of the forcing.
View Article and Find Full Text PDFThe kinetics of the oxidation of a substituted thiourea, trimethylthiourea (TMTU), by chlorite have been studied in slightly acidic media. The reaction is much faster than the comparable oxidation of the unsubstituted thiourea by chlorite. The stoichiometry of the reaction was experimentally deduced to be 2ClO2- + Me2N(NHMe)C=S + H2O --> 2Cl- + Me2N(NHMe)C=O + SO4(2-) + 2H+.
View Article and Find Full Text PDFThe oxidation of 1-phenyl-2-thiourea (PTU) by chlorite was studied in aqueous acidic media. The reaction is extremely complex with reaction dynamics strongly influenced by the pH of reaction medium. In excess chlorite concentrations the reaction stoichiometry involves the complete desulfurization of PTU to yield a urea residue and sulfate: 2ClO2- + PhN(H)CSNH2 + H2O --> SO4(2-) + PhN(H)CONH2 + 2Cl- + 2H+.
View Article and Find Full Text PDF