Publications by authors named "Tabitha George"

The transcription factor carbohydrate response element binding protein (ChREBP) activates genes of glucose, fructose, and lipid metabolism in response to carbohydrate feeding. Integrated transcriptomic and metabolomic analyses in rats with GalNac-siRNA-mediated suppression of ChREBP expression in liver reveal other ChREBP functions. GalNac-siChREBP treatment reduces expression of genes involved in coenzyme A (CoA) biosynthesis, with lowering of CoA and short-chain acyl-CoA levels.

View Article and Find Full Text PDF

Objective: To characterize early physiologic stresses imposed by surgery by applying metabolomic analyses to deeply phenotype pre- and postoperative plasma and urine of patients undergoing elective surgical procedures.

Background: Patients experience perioperative stress through depletion of metabolic fuels. Bowel stasis or injury might allow more microbiome-derived uremic toxins to enter the blood, while the liver and kidney are simultaneously clearing analgesic and anesthetic drugs.

View Article and Find Full Text PDF
Article Synopsis
  • ChREBP is a key transcription factor that regulates genes involved in glucose, fructose, and lipid metabolism when carbohydrates are consumed, but its broader roles in metabolism need more research.* -
  • In a study using liver-specific gene silencing in rats on a high-fat/sugar diet, suppressing ChREBP resulted in lower short-chain acyl CoA metabolites and decreased free CoA levels, affecting various metabolic enzyme expressions.* -
  • Despite ChREBP knockdown enhancing fatty acid oxidation enzymes, the accumulation of liver acylcarnitines and ketones suggested a shift in metabolite processing, alongside maintained pyruvate levels due to increased transporter expression.*
View Article and Find Full Text PDF

Glycine levels are inversely associated with branched-chain amino acids (BCAAs) and cardiometabolic disease phenotypes, but biochemical mechanisms that explain these relationships remain uncharted. Metabolites and genes related to BCAA metabolism and nitrogen handling were strongly associated with glycine in correlation analyses. Stable isotope labeling in Zucker fatty rats (ZFRs) shows that glycine acts as a carbon donor for the pyruvate-alanine cycle in a BCAA-regulated manner.

View Article and Find Full Text PDF

Objective: To evaluate the association between cord blood amino acid and acylcarnitine profiles and measures of adiposity and hyperinsulinemia in healthy newborns.

Study Design: A cross-sectional study of 118 full-term infants born to mothers without gestational diabetes was performed. Cord blood leptin, C-peptide, acylcarnitine, and amino acid levels were measured.

View Article and Find Full Text PDF

Branched-chain amino acids (BCAA) are strongly associated with dysregulated glucose and lipid metabolism, but the underlying mechanisms are poorly understood. We report that inhibition of the kinase (BDK) or overexpression of the phosphatase (PPM1K) that regulates branched-chain ketoacid dehydrogenase (BCKDH), the committed step of BCAA catabolism, lowers circulating BCAA, reduces hepatic steatosis, and improves glucose tolerance in the absence of weight loss in Zucker fatty rats. Phosphoproteomics analysis identified ATP-citrate lyase (ACL) as an alternate substrate of BDK and PPM1K.

View Article and Find Full Text PDF

Objective: A branched-chain amino acid (BCAA)-related metabolic signature is strongly associated with insulin resistance and predictive of incident diabetes and intervention outcomes. To better understand the role that this metabolite cluster plays in obesity-related metabolic dysfunction, we studied the impact of BCAA restriction in a rodent model of obesity in which BCAA metabolism is perturbed in ways that mirror the human condition.

Methods: Zucker-lean rats (ZLR) and Zucker-fatty rats (ZFR) were fed either a custom control, low fat (LF) diet, or an isonitrogenous, isocaloric LF diet in which all three BCAA (Leu, Ile, Val) were reduced by 45% (LF-RES).

View Article and Find Full Text PDF

Objective: The objective was to test the clinical utility of Quantose M(Q) to monitor changes in insulin sensitivity after pioglitazone therapy in prediabetic subjects. Quantose M(Q) is derived from fasting measurements of insulin, α-hydroxybutyrate, linoleoyl-glycerophosphocholine, and oleate, three nonglucose metabolites shown to correlate with insulin-stimulated glucose disposal.

Research Design And Methods: Participants were 428 of the total of 602 ACT NOW impaired glucose tolerance (IGT) subjects randomized to pioglitazone (45 mg/d) or placebo and followed for 2.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiononvcoh700jdfh7hvigvpd5j439rnb6ra): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once