Publications by authors named "Taberlet N"

It is well known that two permanent magnets of fixed orientation will either always repel or attract one another regardless of the distance between them. However, if one magnet is rotated at sufficient speed, a stable position at a given equilibrium distance can exist for a second free magnet. The equilibrium is produced by magnetic forces alone, which are strong enough to maintain a levitating state under gravity.

View Article and Find Full Text PDF

We report an instability of a slider slowly dragged at the surface of a granular bed in a quasistatic regime. The boat-shaped slider sits on the granular medium under its own weight and is free to translate vertically and to rotate around the pitch axis while a constant horizontal speed is imposed. For a wide range of parameters (mass, length, shape, velocity) a regular pattern of peaks and troughs spontaneously emerges as the slider travels forward.

View Article and Find Full Text PDF

Dirt cones are meter-scale structures encountered at the surface of glaciers, which consist of ice cones covered by a thin layer of ashes, sand, or gravel, and which form naturally from an initial patch of debris. In this article, we report field observations of cone formation in the French Alps, laboratory-scale experiments reproducing these structures in a controlled environment, and two-dimensional discrete-element-method-finite-element-method numerical simulations coupling the grain mechanics and thermal effects. We show that cone formation originates from the insulating properties of the granular layer, which reduces ice melting underneath as compared to bare ice melting.

View Article and Find Full Text PDF

In this article, the formation of Zen stones on frozen lakes and the shape of the resulting pedestal are elucidated. Zen stones are natural structures in which a stone, initially resting on an ice surface, ends up balanced atop a narrow ice pedestal. We provide a physical explanation for their formation, sometimes believed to be caused by the melting of the ice.

View Article and Find Full Text PDF

A glacier table consists of a rock supported by a slender column of ice and form naturally on glaciers. We investigate the onset of their formation at a smaller scale in a controlled environment. Depending on the size and thermal conductivity of a cap, it can either form of a table standing on an ice foot, or sink into the ice block.

View Article and Find Full Text PDF

Although many previous studies have focused on the Brazil nut effect, segregation in a self-gravitating circular aggregate remains relatively unexplored. In this paper, size segregation in a two-dimensional assembly of grains in a circular geometry is studied through discrete element method (DEM) numerical simulations. We show that radial segregation within an asteroid submitted to periodic perturbations is not limited to the surface but also occurs in its core.

View Article and Find Full Text PDF

The shape of closed strings and chains propelled at a constant velocity and launched at an angle relative to gravity is studied experimentally, theoretically, and numerically. At low velocity, strings adopt a shape close to the well-known catenary, while at high velocity, they can rise to a nearly horizontal profile. We show that the latter regime can be counterintuitively attributed to aerodynamic effects, although the ambient air exerts no lift on a string moving longitudinally along its profile.

View Article and Find Full Text PDF
Article Synopsis
  • Dilute suspensions of repulsive particles behave predictably under flow conditions, but this changes with weakly attractive particles, which create complex microstructures and flow issues.
  • Observations of log-rolling flocs in such suspensions demonstrate how particle interactions in shear flow create periodic patterns and instabilities that impact industrial processes.
  • By combining experiments with simulations, researchers link the shear-induced structuring to hydrodynamic interactions and develop a universal stability diagram to enhance the assembly and patterning of attractive particle suspensions.
View Article and Find Full Text PDF

A bidimensional array of magnets whose magnetic moments share the same vertical orientation, and lying on a planar surface, can be gradually compacted. As the density reaches a threshold, the assembly becomes unstable, and the magnets violently pop out of plane. In this Letter, we investigate experimentally and theoretically the maximum packing fraction (or density) of a bidimensional planar assembly of identical cylindrical magnets.

View Article and Find Full Text PDF

We demonstrated recently that polyelectrolytes with cationic moieties along the chain and a single anionic head are able to form physical hydrogels due to the reversible nature of the head-to-body ionic bond. Here we generate a variety of such polyelectrolytes with various cationic moieties and counterion combinations starting from a common polymeric platform. We show that the rheological properties (shear modulus, critical strain) of the final hydrogels can be modulated over three orders of magnitude depending on the cation/anion pair.

View Article and Find Full Text PDF

We report experimental results on the dynamics of a granular packing submitted to high-intensity focused ultrasound. Acoustic radiation pressure is shown to remotely induce local rearrangements within a pile as well as global motion around the focal spot in an initially jammed system. We demonstrate that this fluidization process is intermittent for a range of acoustic pressures and hysteretic when the pressure is cycled.

View Article and Find Full Text PDF

Fatigue refers to the changes in material properties caused by repeatedly applied loads. It has been widely studied for, e.g.

View Article and Find Full Text PDF

A ball bouncing repeatedly on a vertically vibrating surface constitutes the famous "bouncing ball" problem, a nonlinear system used in the 1980s, and still in use nowadays, to illustrate the route to chaos by period doubling. In experiments, in order to avoid the ball escape that would be inevitable with a flat surface, a concave lens is often used to limit the horizontal motion. However, we observe experimentally that the system is not stable.

View Article and Find Full Text PDF

Tuning the chain-end functionality of a short-chain cationic homopolymer, owing to the nature of the initiator used in the atom transfer radical polymerization (ATRP) polymerization step, can be used to mediate the formation of a gel of this poly(electrolyte) in water. While a neutral end group gives a solution of low viscosity, a highly homogeneous gel is obtained with a phosphonate anionic moiety, as characterized by rheometry and diffusion nuclear magnetic resonance (NMR). This novel type of supramolecular control over poly(electrolytic) gel formation could find potential use in a variety of applications in the field of electro-active materials.

View Article and Find Full Text PDF

The flow between concentric cylinders is routinely used in soft matter studies. In many cases, the purpose of the setup is rheometric: the idea is to relate macroscopic changes in material properties to microscopic changes in the structure of the material. The correspondence between the modifications of the microscopic structure and the macroscopic flow often relies on viscometric assumptions, which require the flow to be at least laminar.

View Article and Find Full Text PDF

The stress-induced yielding scenario of colloidal gels is investigated under rough boundary conditions by means of rheometry coupled with local velocity measurements. Under an applied shear stress σ, the fluidization of gels made of attractive carbon black particles dispersed in a mineral oil is shown to involve a previously unreported shear rate response γ dot above(t) characterized by two well-defined and separated timescales τc and τf. First γ dot above decreases as a weak power law strongly reminiscent of the primary creep observed in numerous crystalline and amorphous solids, coined the "Andrade creep".

View Article and Find Full Text PDF

The Taylor-Couette flow of a dilute micellar system known to generate shear-induced structures is investigated through simultaneous rheometry and ultrasonic imaging. We show that flow instabilities must be taken into account since both Reynolds and Weissenberg numbers may be large. Before nucleation of shear-induced structures, the flow can be inertially unstable, but once shear-induced structures are nucleated, the kinematics of the flow become chaotic, in a pattern reminiscent of the elastically dominated turbulence known in dilute polymer solutions.

View Article and Find Full Text PDF

We describe a technique coupling standard rheology and ultrasonic imaging with promising applications to characterization of soft materials under shear. Plane wave imaging using an ultrafast scanner allows to follow the local dynamics of fluids sheared between two concentric cylinders with frame rates as high as 10 000 images per second, while simultaneously monitoring the shear rate, shear stress, and viscosity as a function of time. The capacities of this "rheo-ultrasound" instrument are illustrated on two examples: (i) the classical case of the Taylor-Couette instability in a simple viscous fluid and (ii) the unstable shear-banded flow of a non-Newtonian wormlike micellar solution.

View Article and Find Full Text PDF

When submitted to the repeated passages of vehicles unpaved roads made of sand or gravel can develop a ripply pattern known as washboard or corrugated road. We propose a stability analysis based on experimental measurements of the force acting on a blade (or plow) dragged on a circular sand track and show that a linear model is sufficient to describe the instability near onset. The relation between the trajectory of the plow and the profile of the sand bed left after its passage is studied experimentally.

View Article and Find Full Text PDF

We studied the drag and lift forces acting on an inclined plate while it is dragged on the surface of a granular media, both in experiment and in numerical simulation. In particular, we investigated the influence of the horizontal velocity of the plate and its angle of attack. We show that a steady wedge of grains is moved in front of the plow and that the lift and drag forces are proportional to the weight of this wedge.

View Article and Find Full Text PDF

Granular surfaces subjected to forces due to rolling wheels develop ripples above a critical speed. The resulting pattern, known as washboard or corrugated road, is common on dry unpaved roads. We investigated this phenomenon theoretically and experimentally using laboratory-scale apparatus and beds of dry sand.

View Article and Find Full Text PDF

The discrete elements method (DEM) has been widely used in the past decade to study a wide variety of granular systems. The use of numerical simulations constitutes an interesting alternative to the experiment as they can shed new light on a phenomenon as they can overcome experimental obstacles. A lot of granular phenomena can be studied in 2D or with a limited number of grains but the peculiar phenomenon of axial segregation (or banding) is 3-dimensional by nature and requires a large number of grains.

View Article and Find Full Text PDF

We report laboratory experiments on rippled granular surfaces formed under rolling wheels. Ripples appear above a critical speed and drift slowly in the driving direction. Ripples coarsen as they saturate and exhibit ripple creation and destruction events.

View Article and Find Full Text PDF

This paper presents numerical findings on rapid 2D and 3D granular flows on a bumpy base. In the supported regime studied here, a strongly sheared, dilute and agitated layer spontaneously appears at the base of the flow and supports a compact packing of grains moving as a whole. In this regime, the flow behaves like a sliding block on the bumpy base.

View Article and Find Full Text PDF

Unlike most fluids, granular materials include coexisting solid, liquid or gaseous regions, which produce a rich variety of complex flows. Dense flows down inclines preserve this complexity but remain simple enough for detailed analysis. In this review we survey recent advances in this rapidly evolving area of granular flow, with the aim of providing an organized, synthetic review of phenomena and a characterization of the state of understanding.

View Article and Find Full Text PDF