Background: Graphical representations are useful to model complex data in general and biological interactions in particular. Our main motivation is the comparison of metabolic networks in the wider context of developing noninvasive accurate diagnostic tools. However, comparison and classification of graphs is still extremely challenging, although a number of highly efficient methods such as graph neural networks were developed in the recent decade.
View Article and Find Full Text PDFThe discovery of new functional and stable materials is a big challenge due to its complexity. This work aims at the generation of new crystal structures with desired properties, such as chemical stability and specified chemical composition, by using machine learning generative models. Compared with the generation of molecules, crystal structures pose new difficulties arising from the periodic nature of the crystal and from the specific symmetry constraints related to the space group.
View Article and Find Full Text PDFA fast and efficient estimation method is proposed that compensates the distortion in nonlinear transformation models. A likelihood-based estimator is developed that can be computed by an EM-type algorithm. The consistency of the estimator is shown and its limit distribution is provided.
View Article and Find Full Text PDF