In this study, prometryne and prometon were extracted and preconcentrated from aqueous media using an online solid-phase extraction-thermal desorption method coupled with gas chromatography-flame ionization detector (GC-FID), equipped with two different inlets: split and programmable temperature vaporizer (PTV). For this purpose, the applicability of Tenax and a metal-organic framework were investigated as solid-phase sorbents. Several effective parameters on the extraction efficiency, such as the amount of sorbent, sample volume, sample pH and thermal desorption procedure were optimized.
View Article and Find Full Text PDFIn this work, the conventional reactions were used to functionalize the silica surface with amide and hydrocarbon chain groups affording two different mixed-mode stationary phases (Sil-amide-C11 and Sil-C12-amide). The prepared stationary phases were analyzed by elemental analysis and thermogravimetric analysis. The retention of benzene, phenol, pyridine, and aniline was investigated and compared with synthesized and commercial columns, and this led to prove the existence of different interactions on the synthesized stationary phases.
View Article and Find Full Text PDFA modified C column (Silpr-2MI-C18) was prepared using 2-methylindole and C reagent. The extent of C hydrocarbon chain, conjugative rings and anion exchange site provided multiple retention mechanisms, including reversed-phase liquid chromatography (RPLC), π-π interaction, hydrophilic interaction liquid chromatography (HILIC) and anion exchange chromatography (AEC). The separation of protected amino acids was investigated on the commercial C and Silpr-2MI-C18 columns, while the chromatographic conditions, including methanol content and pH of the mobile phase, were studied.
View Article and Find Full Text PDFA new ionic liquid-based high-performance liquid chromatography stationary phase is reported. A derivative of -methyl pyrrolidinium tetrafluoroborate was covalently immobilized on the surface of silica particles to prepare silica-based -methyl pyrrolidinium tetrafluoroborate (SilprMP BF4) stationary phase. The obtained ionic liquid-modified silica was evaluated and confirmed by elemental analysis, infrared spectroscopy, and thermogravimetric analysis.
View Article and Find Full Text PDFWe report the synthesis and enantioseparation characteristics of two novel covalently immobilized deoxycholic acid derivatives as chiral stationary phases for high-performance liquid chromatography. In the structure of the first stationary phase, the 3-position of deoxycholic acid is substituted with a 3,5-dinitrophenylcarbamoyl group and the second one has an additional calix[4]arene attached to the carboxylic group of the deoxycholic acid. The chromatographic performance of the stationary phases was evaluated with enantioseparation of N-(3,5-dinitrobenzoyl)-dl-leucine, N-(3,5-dinitrobenzoyl)-dl-valine, omeprazole, diclofop-methyl, dl-mandelic acid and (RS)-pregabalin.
View Article and Find Full Text PDFHere we report a new chiral stationary phase (CSP) immobilized on silica gel based on cone calix[4]arene functionalized at the upper rim with two l-alanine units as new chiral selector that has been used in high-performance liquid chromatography. The CSP was prepared by covalently bonding the allyl groups at the lower rim of calix[4]arene to silica gel by thiol-ene click chemistry reaction. Elemental analysis of the CSP showed that 120 μmol of chiral selector bonded per gram of silica gel.
View Article and Find Full Text PDFIn this work, we present a new method for synthesis of silica gel stationary phases based on calix[4]arene derivatives. In order to achieve it, 25,27-dipropoxy-26,28-bis-[3-propyloxydimethylsililoxy]calix[4]arene has been synthesized in six steps and immobilized on silica via chlorotrimethylsilane. Stationary phases were characterized by elemental analysis, infrared spectroscopy and thermal analysis and used for the separation of amino acid derivatives by high performance liquid chromatography.
View Article and Find Full Text PDFBiomed Chromatogr
March 2007
This work aims to evaluate for the enantiomeric separations of three agrochemical toxins: haloxyfop-methyl, fenoxaprop-p-ethyl and indoxacarb on crystalline degradation products-chiral stationary phase (CDP-CSP) of high-performance liquid chromatography (HPLC) under normal and polar organic phases. In the normal phase, the mobile phase was n-hexane with alcohols including methanol and isopropanol as polar modifiers. In the polar organic phase mode, the mobile phase was methanol with different percentages of triethylammunium acetate.
View Article and Find Full Text PDF