Alkyltransferase-like proteins (ATLs) are a novel class of DNA repair proteins related to O(6)-alkylguanine-DNA alkyltransferases (AGTs) that tightly bind alkylated DNA and shunt the damaged DNA into the nucleotide excision repair pathway. Here, we present the first structure of a bacterial ATL, from Vibrio parahaemolyticus (vpAtl). We demonstrate that vpAtl adopts an AGT-like fold and that the protein is capable of tightly binding to O(6)-methylguanine-containing DNA and disrupting its repair by human AGT, a hallmark of ATLs.
View Article and Find Full Text PDFJ Struct Funct Genomics
April 2009
The Protein Structural Initiative (PSI) at the US National Institutes of Health (NIH) is funding four large-scale centers for structural genomics (SG). These centers systematically target many large families without structural coverage, as well as very large families with inadequate structural coverage. Here, we report a few simple metrics that demonstrate how successfully these efforts optimize structural coverage: while the PSI-2 (2005-now) contributed more than 8% of all structures deposited into the PDB, it contributed over 20% of all novel structures (i.
View Article and Find Full Text PDFMotivation: Microarray expression data reveal functionally associated proteins. However, most proteins that are associated are not actually in direct physical contact. Predicting physical interactions directly from microarrays is both a challenging and important task that we addressed by developing a novel machine learning method optimized for this task.
View Article and Find Full Text PDFMotivation: The study of biological systems, pathways and processes relies increasingly on analyses of networks. Most often, such analyses focus on network topology, thereby treating all proteins or genes as identical, featureless nodes. Integrating molecular data and insights about the qualities of individual proteins into the analysis may enhance our ability to decipher biological pathways and processes.
View Article and Find Full Text PDF