Publications by authors named "Ta-Wei Tsai"

We introduce a label-free approach for sensing polymerase reactions on deoxyribonucleic acid (DNA) using a chelator-modified silicon-on-insulator field-effect transistor (SOI-FET) that exhibits selective and reversible electrical response to pyrophosphate anions. The chemical modification of the sensor surface was designed to include rolling-circle amplification (RCA) DNA colonies for locally enhanced pyrophosphate (PPi) signal generation and sensors with immobilized chelators for capture and surface-sensitive detection of diffusible reaction by-products. While detecting arrays of enzymatic base incorporation reactions is typically accomplished using optical fluorescence or chemiluminescence techniques, our results suggest that it is possible to develop scalable and portable PPi-specific sensors and platforms for broad biomedical applications such as DNA sequencing and microbe detection using surface-sensitive electrical readout techniques.

View Article and Find Full Text PDF

A method for the non-covalent attachment of proteins to single-walled carbon nanotubes (SWNTs) is described. In this method, the protein is adsorbed to SWNTs that are suspended using sodium cholate, a surfactant and bile salt. The sodium cholate is then removed by dialysis with retention of the protein on the SWNTs.

View Article and Find Full Text PDF

In this study, we describe the use of a sodium cholate suspension-dialysis method to adsorb the redox enzyme glucose oxidase (GOX) onto single-walled carbon nanotubes (SWNT). By this method, solutions of dispersed and debundled SWNTs were prepared that remained stable for 30 days and which retained 75% of the native enzymatic activity. We also demonstrate that GOX-SWNT conjugates can be assembled into amperometric biosensors with a poly[(vinylpyridine)Os(bipyridyl)2Cl(2+/3+)] redox polymer (PVP-Os) through a layer-by-layer (LBL) self-assembly process.

View Article and Find Full Text PDF