NO and NO2 (collectively called NOx) are major air pollutants in automotive emissions. More effective and easier treatments of NOx than those achieved by the present methods can offer better protection of human health and higher fuel efficiency that can reduce greenhouse gas emissions. However, currently commercialized technologies for automotive NOx emission control cannot effectively treat diesel-like exhausts with high NOx concentrations.
View Article and Find Full Text PDFThe high fuel efficiency of lean-burn engines is associated with high temperature and excess oxygen during combustion and thus is associated with high-concentration NO(x) emission. This work reveals that very high concentration of NO(x) in the exhaust can be reduced and hydrocarbons (HCs) can be simultaneously oxidized using a low-temperature solid oxide fuel cell (SOFC). An SOFC unit is constructed with Ni-YSZ as the anode, YSZ as the electrolyte, and La(0.
View Article and Find Full Text PDFA solid oxide fuel cell (SOFC) unit is constructed with Ni-YSZ as the anode, YSZ as the electrolyte, and La(0.6)Sr(0.4)CoO(3)-Ce(0.
View Article and Find Full Text PDFA novel method for the preparation of gelatin scaffolds was designed by varying the crosslinking temperature. Four pore size ranges of genipin-crosslinked gelatin scaffolds were made by varying the crosslinking temperature from 10 to 25 degrees C, with the pore sizes ranging from 50 to 500 microm. The pore size of the scaffold increases as the crosslinking temperature increases.
View Article and Find Full Text PDF