Glaucoma is identified by the loss of retinal ganglion cells (RGCs). The primary approach to managing glaucoma is to control intraocular pressure (IOP). Lately, there has been an increasing focus on neuroprotective therapies for glaucoma because of the limited effectiveness of standard methods in reducing IOP and preventing ongoing vision deterioration in certain glaucoma patients.
View Article and Find Full Text PDFGraefes Arch Clin Exp Ophthalmol
July 2024
Purpose: Tracking functional changes in visual fields (VFs) through standard automated perimetry remains a clinical standard for glaucoma diagnosis. This study aims to develop and evaluate a deep learning (DL) model to predict regional VF progression, which has not been explored in prior studies.
Methods: The study included 2430 eyes of 1283 patients with four or more consecutive VF examinations from the baseline.
Glaucoma, a leading cause of irreversible blindness globally, primarily affects retinal ganglion cells (RGCs). This review dives into the anatomy of RGC subtypes, covering the different underlying theoretical mechanisms that lead to RGC susceptibility in glaucoma, including mechanical, vascular, excitotoxicity, and neurotrophic factor deficiency, as well as oxidative stress and inflammation. Furthermore, we examined numerous imaging methods and functional assessments to gain insight into RGC health.
View Article and Find Full Text PDFOcular drug delivery is a challenging field due to the unique anatomical and physiological barriers of the eye. Biodegradable polymers have emerged as promising tools for efficient and controlled drug delivery in ocular diseases. This review provides an overview of biodegradable polymer-based drug-delivery systems for ocular diseases with emphasis on the potential for biodegradable polymers to overcome the limitations of conventional methods, allowing for sustained drug release, improved bioavailability, and targeted therapy.
View Article and Find Full Text PDFThe complex nature of the ocular drug delivery barrier presents a significant challenge to the effective administration of drugs, resulting in poor therapeutic outcomes. To address this issue, it is essential to investigate new drugs and alternative delivery routes and vehicles. One promising approach is the use of biodegradable formulations to develop potential ocular drug delivery technologies.
View Article and Find Full Text PDFAnkylosing spondylitis (AS) is known to increase the risk of stroke. Among patients with AS, uveitis is the most common extra-articular manifestation. However, no previous investigations have discussed the association between uveitis and the risk for developing stroke in patients with AS.
View Article and Find Full Text PDF