The coronavirus disease 2019 (COVID-19) pandemic has had a major impact on human life. This review highlights the versatile roles of both classical and modern structure-based approaches for COVID-19. X-ray crystallography, nuclear magnetic resonance spectroscopy, and cryogenic electron microscopy are the three cornerstones of classical structural biology.
View Article and Find Full Text PDFLead (Pb) poisoning can damage human bodies silently, without specific symptoms or conspicuous warning signs. To provide safe and user-friendly tools for detecting heavy metals at low concentrations, scientists have developed and optimized versatile biosensors. To practically employ the developed biosensors specific for Pb (eg, the optimized Met-lead 1.
View Article and Find Full Text PDFA de novo assembly algorithm is provided to propose the assembly of bitopic transmembrane domains (TMDs) of membrane proteins. The algorithm is probed using, in particular, viral channel forming proteins (VCPs) such as M2 of influenza A virus, E protein of severe acute respiratory syndrome corona virus (SARS-CoV), 6K of Chikungunya virus (CHIKV), SH of human respiratory syncytial virus (hRSV), and Vpu of human immunodeficiency virus type 2 (HIV-2). The generation of the structures is based on screening a 7-dimensional space.
View Article and Find Full Text PDF