Publications by authors named "Ta Ngoc Bach"

Surface-enhanced Raman spectroscopy (SERS) is widely recognized as a powerful analytical technique, offering molecular identification by amplifying characteristic vibrational signals, even at the single-molecule level. While SERS has been successfully applied for a wide range of targets including pesticides, dyes, bacteria, and pharmaceuticals, it has struggled with the detection of molecules with inherently low Raman scattering cross-sections. Urea, a key nitrogen-containing biomolecule and the diamide of carbonic acid, is a prime example of such a challenging target.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) is a powerful analytical technique, yet it faces challenges with certain probe molecules exhibiting weak or inactive signals, limiting their applicability. In a recent study, we investigated this phenomenon using a set of four probe molecules─chloramphenicol (CAP), 4-nitrophenol (4-NP), amoxicillin (AMX), and furazolidone (FZD)─deposited on Ag-based nanostructured SERS substrates. Despite being measured under identical conditions, CAP and 4-NP exhibited SERS activity, while AMX and FZD did not.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) is a powerful, highly efficient analytical technique capable of providing label-free, non-invasive, rapid, and ultrasensitive molecular detection down to the single-molecule level. Despite its advantages, SERS remains largely confined to laboratory settings due to the complexities of substrate fabrication and challenges in analyzing real-world samples. Developing flexible SERS substrates that achieve both high fabrication efficiency and high sensing performance, while being practical for field applications, is critical for advancing SERS toward broader, real-world use.

View Article and Find Full Text PDF

A flexible, ultrasensitive, and practical SERS chip is presented based on a paper/f-TiO/Ag structure. The chip enhances the self-assembly of Ag nanoparticles on a cellulose fiber matrix, facilitated by smart functionalized TiO nanomaterials (f-TiO). This design enables superior detection of the hazardous pesticide tricyclazole (TCZ) on crops using an advanced, simple, and efficient analytical method.

View Article and Find Full Text PDF

Recently, deep-red-emitting phosphors that can be excited by ultraviolet (UV) and near-ultraviolet (NUV) light have been extensively investigated for plant growth LED applications. However, due to the harmful effects of these high-energy rays on plants, violet- or blue-excited deep-red-emitting phosphors are considered a more appropriate solution. In this work, SrAlO:Cr phosphors were synthesized using a simple solid-state reaction, revealing a strikingly sharp deep-red emission band centered at 694 nm and effective excitation by violet light.

View Article and Find Full Text PDF
Article Synopsis
  • Plasmonic sensors might replace big, heavy sensors in the future because they are really useful in many areas.
  • Scientists created tiny silver particles (Ag NPs) that can stick to glass and fiber sensors and can help detect things very quickly and easily.
  • These silver-coated sensors are super sensitive, making it easier to find small amounts of certain chemicals, and they stayed reliable even after being stored for a month!
View Article and Find Full Text PDF

Magnetically separable core/shell FeO/ZnO heteronanostructures (MSCSFZ) were synthesized by a facile approach, and their application for enhanced solar photodegradation of RhB was studied. The formation mechanism of MSCSFZ was proposed, in which FeO nanoparticles served as a template for supporting and anchoring the ZnO crystal layer as the shells. The morphology of MSCSFZ can be varied from spherical to rice seed-like structures, and the bandgap was able to be narrowed down to 2.

View Article and Find Full Text PDF

The use of dye in food is harmful to human health and is prohibited nowadays. However, it is still used because of the benefits, such as cheap prices and abundant resources. Rhodamine B is usually used as the colorant in food such as chili powder, chili oil, etc.

View Article and Find Full Text PDF