Publications by authors named "TRIVEDI D"

Adulteration of high quality food products with sub-standard and cheaper grades is a world-wide problem taxing the global economy. Currently, many traditional tests suffer from poor specificity, highly complex outputs and a lack of high-throughput processing. Metabolomics has been successfully used as an accurate discriminatory technique in a number of applications including microbiology, cancer research and environmental studies and certain types of food fraud.

View Article and Find Full Text PDF

Cyclophilins regulate protein folding, transport and signalling through catalysis of proline isomerization, and are ubiquitously expressed in both prokaryotes and eukaryotes. Cpr3 is the yeast mitochondrial cyclophilin and it is structurally and biophysically uncharacterized so far. Yeast cyclophilin gene cpr3 is essential for the lactate metabolism.

View Article and Find Full Text PDF
Article Synopsis
  • Hypertrophic cardiomyopathy is a common inherited heart condition affecting more than 1 in 500 people globally, caused by genetic mutations in proteins that aid heart muscle contraction.
  • Studies on beta-cardiac myosin mutations, the key motor protein in these conditions, show no clear understanding of how these mutations affect its function.
  • Our research utilizes human beta-cardiac myosin and various methods to analyze its interactions with actin filaments, exploring factors like phosphorylation and additional regulatory proteins that impact heart muscle function.
View Article and Find Full Text PDF

Background: Worldwide, the prevalences of diabetes and dementia are both increasing, particularly in older people. Rates of diabetes in people with dementia are between 13 and 20 %. Diabetes management and diabetic self-care may be adversely affected by the presence of dementia.

View Article and Find Full Text PDF

In this study we have employed metabolomics approaches to understand the metabolic effects of producing enhanced green fluorescent protein (eGFP) as a recombinant protein in Escherichia coli cells. This metabolic burden analysis was performed against a number of recombinant expression systems and control strains and included: (i) standard transcriptional recombinant expression control system BL21(DE3) with the expression plasmid pET-eGFP, (ii) the recently developed dual transcriptional-translational recombinant expression control strain BL21(IL3), with pET-eGFP, (iii) BL21(DE3) with an empty expression plasmid pET, (iv) BL21(IL3) with an empty expression plasmid, and (v) BL21(DE3) without an expression plasmid; all strains were cultured under various induction conditions. The growth profiles of all strains together with the results gathered by the analysis of the Fourier transform infrared (FT-IR) spectroscopy data, identified IPTG-dependent induction as the dominant factor hampering cellular growth and metabolism, which was in general agreement with the findings of GC-MS analysis of cell extracts and media samples.

View Article and Find Full Text PDF

Microalgae produce metabolites that could be useful for applications in food, biofuel or fine chemical production. The identification and development of suitable strains require analytical methods that are accurate and allow rapid screening of strains or cultivation conditions. We demonstrate the use of Fourier transform infrared (FT-IR) spectroscopy to screen mutant strains of .

View Article and Find Full Text PDF

Myosins use a conserved structural mechanism to convert the energy from ATP hydrolysis into a large swing of the force-generating lever arm. The precise timing of the lever arm movement with respect to the steps in the actomyosin ATPase cycle has not been determined. We have developed a FRET system in myosin V that uses three donor-acceptor pairs to examine the kinetics of lever arm swing during the recovery and power stroke phases of the ATPase cycle.

View Article and Find Full Text PDF

Background: International registries for acute type A aortic dissection (TAAD) demonstrate stagnant operative mortality rates in excess of 20% and stroke rates of 9% to 25%, with little global emphasis on stroke reduction or carotid involvement. Cerebral malperfusion with TAAD has been linked to poorer outcome. We hypothesize that concomitant carotid dissection or complex dissection flaps in the arch play a major role in stroke development and that aggressive reconstruction of the arch and carotid arteries can improve neurologic outcomes in TAAD.

View Article and Find Full Text PDF

Background: According to Warburg's effect, the rate of glycolysis increases in cancerous cells. This will increase overall levels of pyruvic acid. The present on-going study was conducted to estimate the levels of pyruvic acid in saliva and serum in normal, oral PMD subjects.

View Article and Find Full Text PDF

Campylobacter species are one of the main causes of food poisoning worldwide. Despite the availability of established culturing and molecular techniques, due to the fastidious nature of these microorganisms, simultaneous detection and species differentiation still remains challenging. This study focused on the differentiation of eleven Campylobacter strains from six species, using Fourier transform infrared (FT-IR) and Raman spectroscopies, together with matrix-assisted laser desorption ionisation-time of flight-mass spectrometry (MALDI-TOF-MS), as physicochemical approaches for generating biochemical fingerprints.

View Article and Find Full Text PDF

Background: Whilst undergoing differentiation, Streptomyces produce a large quantity of hydrolytic enzymes and secondary metabolites, and it is this very ability that has focussed increasing interest on the use of these bacteria as hosts for the production of various heterologous proteins. However, within this genus, the exploration and understanding of the metabolic burden associated with such bio-products has only just begun. In this study our overall aim was to apply metabolomics approaches as tools to get a glimpse of the metabolic alterations within S.

View Article and Find Full Text PDF

Recent observations of excitonic coherences within photosynthetic complexes suggest that quantum coherences could enhance biological light harvesting efficiencies. Here, we employ optical pump-probe spectroscopy with few-femtosecond pulses to observe an excitonic quantum coherence in CdSe nanocrystals, a prototypical artificial light harvesting system. This coherence, which encodes the high-speed migration of charge over nanometer length scales, is also found to markedly alter the displacement amplitudes of phonons, signaling dynamics in the non-Born-Oppenheimer regime.

View Article and Find Full Text PDF

Stimulating the microbial reduction of aqueous uranium(VI) to insoluble U(IV) via electron donor addition has been proposed as a strategy to remediate uranium-contaminated groundwater in situ. However, concerns have been raised regarding the longevity of microbially precipitated U(IV) in the subsurface, particularly given that it may become remobilized if the conditions change to become oxidizing. An alternative mechanism is to stimulate the precipitation of poorly soluble uranium phosphates via the addition of an organophosphate and promote the development of reducing conditions.

View Article and Find Full Text PDF

Introduction: Large proportions of the population are not meeting recommended levels of physical activity and have increasingly sedentary lifestyles. Low levels of physical activity are predictive of poor health outcomes and time spent sedentary is related to a host of risk factors independently of physical activity levels. Building an evidence base of the best approaches to intervene in the lifestyles of inactive individuals is crucial in preventing long-term disease, disability and higher mortality rates.

View Article and Find Full Text PDF

A nonadiabatic (NA) molecular dynamics (MD) simulation requires calculation of NA coupling matrix elements, the number of which scales as a square of the number of basis states. The basis size can be huge in studies of nanoscale materials, and calculation of the NA couplings can present a significant bottleneck. A quantum-classical approximation, NAMD overestimates coherence in the quantum, electronic subsystem, requiring decoherence correction.

View Article and Find Full Text PDF

The bacterial ubiD and ubiX or the homologous fungal fdc1 and pad1 genes have been implicated in the non-oxidative reversible decarboxylation of aromatic substrates, and play a pivotal role in bacterial ubiquinone (also known as coenzyme Q) biosynthesis or microbial biodegradation of aromatic compounds, respectively. Despite biochemical studies on individual gene products, the composition and cofactor requirement of the enzyme responsible for in vivo decarboxylase activity remained unclear. Here we show that Fdc1 is solely responsible for the reversible decarboxylase activity, and that it requires a new type of cofactor: a prenylated flavin synthesized by the associated UbiX/Pad1.

View Article and Find Full Text PDF

Ubiquinone (also known as coenzyme Q) is a ubiquitous lipid-soluble redox cofactor that is an essential component of electron transfer chains. Eleven genes have been implicated in bacterial ubiquinone biosynthesis, including ubiX and ubiD, which are responsible for decarboxylation of the 3-octaprenyl-4-hydroxybenzoate precursor. Despite structural and biochemical characterization of UbiX as a flavin mononucleotide (FMN)-binding protein, no decarboxylase activity has been detected.

View Article and Find Full Text PDF

Biodiesel has emerged as an environmentally friendly alternative to fossil fuels; however, the low price of glycerol feed-stocks generated from the biodiesel industry has become a burden to this industry. A feasible alternative is the microbial biotransformation of waste glycerol to hydrogen and ethanol. Escherichia coli, a microorganism commonly used for metabolic engineering, is able to biotransform glycerol into these products.

View Article and Find Full Text PDF

Background: The last few decades have seen a growing emphasis on evidence-informed decision-making in health care. Systematic reviews, such as those produced by Cochrane, have been a key component of this movement. The National Institute for Health Research (NIHR) Systematic Review Programme currently supports 20 Cochrane Review Groups (CRGs) in the UK and it is important that this funding represents value for money.

View Article and Find Full Text PDF

HLA-B associated transcript 1 (BAT1) protein, also named as spliceosome RNA helicase UAP56, is a member of the DExD/H-box family of helicases. However, regulation under stress, biochemical properties, and functions of plant homologue of BAT1 are poorly understood. Here, we report the purification and detailed biochemical characterization of the Oryza sativa homologue of BAT1 (OsBAT1/UAP56) protein (52 kDa) and regulation of its transcript under abiotic stress.

View Article and Find Full Text PDF

Objectives: Various antibacterial and antiplaque agents are used in chemical plaque control but none are without their shortcomings. Chlorhexidine considered a gold standard, also has an array of side effects. To overcome these, numerous herbal extracts have been tried and tested and one among them is holy basil.

View Article and Find Full Text PDF