Publications by authors named "TL Rhodes"

The fixed-frequency and frequency-modulated continuous-wave (FM-CW) reflectometers on LTX-β (Lithium Tokamak eXperiment-β) have been configured to use the same transmission lines and antenna arrays for coincident views of the core and edge plasma. The fixed-frequency channels (13.1-20.

View Article and Find Full Text PDF

Validated and accurate edge profiles (temperature, density, etc.) are vitally important to the Mega Ampere Spherical Tokamak Upgrade (MAST-U) divertor and confinement effort. Density profile reflectometry has the potential to significantly add to the measurement capabilities currently available on MAST-U (e.

View Article and Find Full Text PDF

A set of new millimeter-wave diagnostics will deliver unique measurement capabilities for National Spherical Torus Experiment-Upgrade to address a variety of plasma instabilities believed to be important in determining thermal and particle transport, such as micro-tearing, global Alfvén eigenmodes, kinetic ballooning, trapped electron, and electron temperature gradient modes. These diagnostics include a new integrated intermediate-k Doppler backscattering (DBS) and cross-polarization scattering (CPS) system (four channels, 82.5-87 GHz) to measure density and magnetic fluctuations, respectively.

View Article and Find Full Text PDF

To validate nonlinear gyrokinetic simulations of electron temperature turbulence, the experimental correlation electron cyclotron emission (CECE) measurements are to be compared using a synthetic CECE diagnostic, which generates modeled CECE measurement quantities by implementing realistic measurement parameters (e.g., spatial and wavenumber resolutions, radial location, etc.

View Article and Find Full Text PDF

We present the design and laboratory tests for a new Q-band frequency tunable Doppler backscattering (DBS) system suitable for probing poloidal wavenumber kñ = 6-8 cm-1 density fluctuations and their flow velocities in the pedestal and scape-off layer (SOL) of the DIII-D tokamak. This system will provide new measurements in the increasingly important and under-diagnosed far pedestal and SOL plasma regions. These results are important for experimental transport studies and necessary for the validation of transport models, both of which are important to fusion energy research.

View Article and Find Full Text PDF

In H-mode tokamak plasmas, the plasma is sometimes ejected beyond the edge transport barrier. These events are known as edge localized modes (ELMs). ELMs cause a loss of energy and damage the vessel walls.

View Article and Find Full Text PDF

Multimachine empirical scaling predicts an extremely narrow heat exhaust layer in future high magnetic field tokamaks, producing high power densities that require mitigation. In the experiments presented, the width of this exhaust layer is nearly doubled using actuators to increase turbulent transport in the plasma edge. This is achieved in low collisionality, high confinement edge pedestals with their gradients limited by turbulent transport instead of large-scale, coherent instabilities.

View Article and Find Full Text PDF

A novel quadrature Doppler Backscattering (DBS) system has been developed and optimized for the E-band (60-90 GHz) frequency range using either O-mode or X-mode polarization in DIII-D plasmas. In general, DBS measures the amplitude of density fluctuations and their velocity in the lab frame. The system can simultaneously monitor both low-frequency turbulence (f < 10 MHz) and radiofrequency plasma density fluctuations over a selectable frequency range (20-500 MHz).

View Article and Find Full Text PDF

The radial correlation length (L) is one of the essential quantities to measure in order to more fully characterize and understand turbulence and anomalous transport in magnetic fusion plasmas. The analysis method for calculating L of electron temperature (T) turbulence from correlation electron cyclotron emission (correlation ECE or CECE) radiometer measurements has not been fully developed partly due to the fact that the turbulent electron temperature fluctuations are generally imbedded in much larger amplitude thermal noise, which leads to a greatly reduced cross correlation coefficient (ϱ) between two spatially separated ECE signals. This work finds that this ϱ reduction factor due to thermal noise is a function of the local relative temperature fluctuation power and CECE system bandwidths of intermediate and video frequencies, independent of radial separations.

View Article and Find Full Text PDF

A new Doppler backscattering (DBS) system has been installed and tested on the MAST-U spherical tokamak. It utilizes eight simultaneous fixed frequency probe beams (32.5, 35, 37.

View Article and Find Full Text PDF

We use the beam model of Doppler backscattering (DBS), which was previously derived from beam tracing and the reciprocity theorem, to shed light on mismatch attenuation. This attenuation of the backscattered signal occurs when the wavevector of the probe beam's electric field is not in the plane perpendicular to the magnetic field. Correcting for this effect is important for determining the amplitude of the actual density fluctuations.

View Article and Find Full Text PDF

The high density fluctuation poloidal wavenumber, k (k > 8 cm, kρ > 5, ρ is the ion gyro radius using the ion sound velocity), measurement capability of a new Doppler backscattering (DBS) system at the DIII-D tokamak has been experimentally evaluated. In DBS, wavenumber (k) matching becomes more important at higher wavenumbers, owing to the exponential dependence of the measured signal loss factor on wave vector mismatch. Wave vector matching allows for the Bragg scattering condition to be satisfied, which minimizes the signal loss at higher k's.

View Article and Find Full Text PDF

A thermal ion driven bursting instability with rapid frequency chirping, considered as an Alfvénic ion temperature gradient mode, has been observed in plasmas having reactor-relevant temperature in the DIII-D tokamak. The modes are excited over a wide spatial range from macroscopic device size to microturbulence size and the perturbation energy propagates across multiple spatial scales. The radial mode structure is able to expand from local to global in ∼0.

View Article and Find Full Text PDF

A combined Doppler backscattering/cross-polarization scattering (DBS/CPS) system is being deployed on MAST-U for simultaneous measurements of local density turbulence, turbulence flows, and magnetic turbulence. In this design, CPS shares the probing beam with the DBS and uses a separate parallel-viewing receiver system. In this study, we utilize a modified GENRAY 3D ray-tracing code to simulate the propagation of the probing and scattered beams.

View Article and Find Full Text PDF

Turbulent electron temperature fluctuation measurement using a correlation electron cyclotron emission (CECE) radiometer has become an important diagnostic for studying energy transport in fusion plasmas, and its use is widespread in tokamaks (DIII-D, ASDEX Upgrade, Alcator C-Mod, Tore Supra, EAST, TCV, HL-2A, etc.). The CECE diagnostic typically performs correlation analysis between two closely spaced (within the turbulent correlation length) ECE channels that are dominated by uncorrelated thermal noise emission.

View Article and Find Full Text PDF

New capabilities of fast-sweep frequency-modulated profile reflectometry are explored to measure electron density n perturbation magnitudes and radial profiles due to plasma coherent modes in DIII-D. The first approach is based on the frequency analysis of phase perturbations associated with high frequency (∼MHz) Alfvén eigenmodes (AEs). The measurement of ∼5.

View Article and Find Full Text PDF

Final design studies in preparation for manufacturing have been performed for functional components of the vacuum portion of the ITER Low-Field Side Reflectometer (LFSR). These components consist of an antenna array, electron cyclotron heating (ECH) protection mirrors, phase calibration mirrors, and vacuum windows. Evaluation of these components was conducted at the LFSR test facility and DIII-D.

View Article and Find Full Text PDF

Plasma discharges with a negative triangularity (δ=-0.4) shape have been created in the DIII-D tokamak with a significant normalized beta (β_{N}=2.7) and confinement characteristic of the high confinement mode (H_{98y2}=1.

View Article and Find Full Text PDF

The ≈ 1 mm ( = 288 GHz) interferometer for the Lithium Tokamak Experiment- (LTX-) will use a chirped-frequency source and a centerstack-mounted retro-reflector mirror to provide electron line density measurements along a single radial chord at the midplane. The interferometer is unique in the use of a single source (narrow-band chirped-frequency interferometry) and a single beam splitter for separating and recombining the probe and reference beams. The current work provides a documentation of the interferometry hardware and evaluates the capabilities of the system as a far-forward collective scattering diagnostic.

View Article and Find Full Text PDF

Cross-polarization scattering (CPS) provides localized magnetic fluctuation ( ) measurements in fusion plasmas based on the process where scatters electromagnetic radiation into the orthogonal polarization. The CPS system on DIII-D utilizes the probe beam of a Doppler backscattering (DBS) diagnostic combined with a cross-view CPS receiver system, which allows simultaneous density and measurements with good spatial and wavenumber coverage. The interpretation of the signals is challenging due to the complex plasma propagation of the DBS probe beam and CPS receive beams.

View Article and Find Full Text PDF

Real-time phase calibration of the ITER profile reflectometer is essential due to the long plasma duration and expected waveguide path length changes during a discharge. Progress has been recently made in addressing this issue by employing a phase calibration technique on DIII-D that monitors calibration variations that occur during each plasma discharge. By installing a thin free-standing metallic wire (1 mm diameter) near the end of the overmoded waveguide transmission system (oriented perpendicular to the waveguide axis), the round-trip phase shift from the wire is detected simultaneously with the plasma phase shifts.

View Article and Find Full Text PDF

Simulations and laboratory tests are used to design and optimize a quasi-optical system for cross-polarization scattering (CPS) measurements of magnetic turbulence on the DIII-D tokamak. The CPS technique uses a process where magnetic turbulence scatters electromagnetic radiation into the perpendicular polarization enabling a local measurement of the perturbing magnetic fluctuations. This is a challenging measurement that addresses the contribution of magnetic turbulence to anomalous thermal transport in fusion research relevant plasmas.

View Article and Find Full Text PDF

In this paper, we address the challenging question of measuring turbulence levels on the high magnetic field side (HFS) of tokamak plasmas. Although turbulence measurements on the HFS can provide a stringent constraint for the turbulence model validation, to date only low magnetic field side (LFS) measured turbulence has been used in validation studies. To address this issue, an eight channel Correlation Electron Cyclotron Emission (CECE) system at DIII-D was modified to probe both LFS and HFS.

View Article and Find Full Text PDF

A new, long-lived limit cycle oscillation (LCO) regime has been observed in the edge of near zero torque high performance DIII-D tokamak plasma discharges. These LCOs are localized and composed of density turbulence, gradient drives, and E×B velocity shear damping (E and B are the local radial electric and total magnetic fields). Density turbulence sequentially acts as a predator (via turbulence transport) of profile gradients and a prey (via shear suppression) to the E×B velocity shear.

View Article and Find Full Text PDF