This randomized controlled trial examined the efficacy of peer network interventions to improve the social connections of 47 high school students with severe disabilities. School staff invited, trained, and supported 192 peers without disabilities to participate in individualized social groups that met throughout one semester. Compared to adolescents in the "business-as-usual" control group (n = 48), students receiving peer networks gained significantly more new social contacts and friendships.
View Article and Find Full Text PDFBackground: Due to the complex molecular structure and proprietary manufacturing processes of monoclonal antibodies (mAbs), differences in structure and function may be expected during development of biosimilar mAbs. Important regulatory requirements for approval of biosimilar products involve comprehensive assessments of any potential differences between proposed biosimilars and reference mAbs, including differences in all known mechanisms of action, using sensitive and relevant methods. Any identified structural differences should not result in differences in biofunctional or clinical activity.
View Article and Find Full Text PDFObjective: Tumor necrosis factor (TNF) is a highly pleiotropic cytokine with multiple activities other than its originally discovered role of tumor necrosis in rodents. TNF is now understood to play a contextual role in driving either tumor elimination or promotion. Using both animal and human data, this review examines the role of TNF in cancer development and the effect of TNF and TNF inhibitors (TNFis) on malignancy risk.
View Article and Find Full Text PDFAlthough IL-32 has been shown to be induced under various pathological conditions, a detailed understanding of native IL-32 intracellular distribution and mechanism of release from cells has not been reported. We examined the expression of IL-32 in the intestinal epithelial cell line HT-29 following TNFα and IFNγ co-stimulation. The subcellular localization of induced IL-32 was associated with the membrane of lipid droplet-like structures and vacuolar structures that co-localized with markers of endosomes and lysosomes.
View Article and Find Full Text PDFA versatile bacterial strain able to convert polycyclic aromatic hydrocarbons (PAHs) was isolated, and a conversion by the isolate of both individual substances and PAH mixtures was investigated. The strain belonged to the Sphingomonas genus as determined on the basis of 16S rRNA analysis and was designated as VKM B-2434. The strain used naphthalene, acenaphthene, phenanthrene, anthracene and fluoranthene as a sole source of carbon and energy, and cometabolically oxidized fluorene, pyrene, benz[a]anthracene, chrysene and benzo[a]pyrene.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2007
Substrate specificity within the family of enzymes designated as homoserine transsuccinylases is variable, with some organisms utilizing succinyl-CoA and other organisms utilizing acetyl-CoA. In this study it is shown that the enzyme from Bacillus cereus uses acetyl-CoA as its acyl donor, but its catalytic rate is significantly lower than other HTS family members. BcHTS is inactivated by both iodoacetamide and diethyl pyrocarbonate and the enzyme can be partially protected from inactivation by the presence of succinyl-CoA.
View Article and Find Full Text PDFHomoserine transsuccinylase catalyzes the succinylation of homoserine in several bacterial species, the first unique step in methionine biosynthesis in these organisms. The enzyme from Escherichia coli is reported to be a dimer and uses a ping-pong catalytic mechanism involving transfer of succinate from succinyl-CoA to an enzyme nucleophile, followed by transfer to homoserine to form O-succinylhomoserine. Site-directed mutagenesis and steady-state kinetics were used to identify three amino acids that participate in catalysis.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
August 2007
Articular cartilage contains both chondrocyte cells and extracellular matrix (ECM) components. Currently, comprehensive information concerning the protein composition of human articular cartilage tissue is somewhat lacking. In this report we detail the use of tandem mass spectrometry (MS/MS) for a preliminary global identification of proteins from human articular knee cartilage tissue from patients diagnosed with osteoarthritis.
View Article and Find Full Text PDFThe methionine biosynthetic pathway found in bacteria is controlled at the first step, acylation of the gamma-hydroxyl of homoserine. This reaction is catalyzed by one of two unique enzymes, homoserine transacetylase or homoserine transsuccinylase, which have no amino acid sequence similarity. We cloned, expressed, and purified homoserine transsuccinylase from the thermophilic bacterium Thermotoga maritima.
View Article and Find Full Text PDFNonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease, and some of its forms are progressive. This study describes the profiling of hepatic gene expression and serum protein content in patients with different subtypes of NAFLD. Liver biopsy specimens from 98 bariatric surgery patients were classified as normal, steatosis alone, steatosis with nonspecific inflammation, and nonalcoholic steatohepatitis (NASH).
View Article and Find Full Text PDFSurface-enhanced laser desorption/ionization (SELDI)-time of flight is a recent technology that allows proteomic analysis with limited material requirements. This characteristic makes it a valuable technique for microbiologists handling problematic samples, such as low cell number cultures. We compared three simple procedures for protein extraction from bacteria for compatibility with the ProteinChip Array; we also determined the amount of protein required for each analysis.
View Article and Find Full Text PDFWe have cloned the genes PANX1, PANX2 and PANX3, encoding putative gap junction proteins homologous to invertebrate innexins, which constitute a new family of mammalian proteins called pannexins. Phylogenetic analysis revealed that pannexins are highly conserved in worms, mollusks, insects and mammals, pointing to their important function. Both innexins and pannexins are predicted to have four transmembrane regions, two extracellular loops, one intracellular loop and intracellular N and C termini.
View Article and Find Full Text PDFBackground And Aims: Persistent inflammation observed in inflammatory bowel disease may be the consequence of an increased or aberrant immune response to normal gut constituents or an overall immune dysregulation and imbalance. Cytokines play an important role in immune regulation and interleukin 18 (IL-18) is one such cytokine that has emerged as being instrumental in driving CD4+ T cell responses towards a Th1-type. IL-18 can also directly mediate inflammation, moderate interleukin 1 activity, and can act on cell types other than T cells.
View Article and Find Full Text PDFThe first unique step in bacterial and plant methionine biosynthesis involves the acylation of the gamma-hydroxyl of homoserine. In Haemophilus influenzae, acylation is accomplished via an acetyl-CoA-dependent acetylation catalyzed by homoserine transacetylase. The activity of this enzyme regulates flux of homoserine into multiple biosynthetic pathways and, therefore, represents a critical control point for cell growth and viability.
View Article and Find Full Text PDFIL-18 induces IFN-gamma and NK cell cytotoxicity, making it a logical target for viral antagonism of host defense. We demonstrate that the ectromelia poxvirus p13 protein, bearing homology to the mammalian IL-18 binding protein, binds IL-18, and inhibits its activity in vitro. Binding of IL-18 to the viral p13 protein was compared with binding to the cellular IL-18R.
View Article and Find Full Text PDFThe first unique step in bacterial and plant methionine biosynthesis involves the activation of the gamma-hydroxyl of homoserine. In Escherichia coli, this activation is accomplished via a succinylation reaction catalyzed by homoserine transsuccinylase. The activity of this enzyme is closely regulated in vivo and therefore represents a critical control point for cell growth and viability.
View Article and Find Full Text PDFReplicative senescence is characterized by irreversible growth arrest and has been defined by four genetic complementation groups. One of these groups is associated with the predominance of underphosphorylated, growth-suppressive retinoblastoma tumor suppressor protein (pRb). Although certain members of the cyclin-dependent kinase (cdk)/cyclin family, some of which phosphorylate pRb, are underexpressed in senescent cells, others are expressed but inactive.
View Article and Find Full Text PDFCurr Opin Chem Biol
October 1999
Within the past 18 months work has continued on the structure and mechanisms of enzymes involved in the diaminopimelic acid/lysine biosynthetic pathway. A novel structure has been determined for a PLP-independent epimerase, and structures with bound substrates have been solved for two other enzymes. Additionally, new studies have appeared describing the chemical mechanisms of three enzymes in the pathway.
View Article and Find Full Text PDFJ Biol Chem
November 1998
We have identified a novel member of the interleukin-1 (IL-1) receptor family, which we have termed AcPL. In transient transfection assays, we were unable to demonstrate a role for AcPL in IL-1-induced activation of NFkappaB. Interleukin-18 (interferon-gamma-inducing factor) is another member of the IL-1 family of cytokines, and it has recently been shown that IL-18 has a weak affinity for IL-1R-rp1.
View Article and Find Full Text PDFHydrolysis of N-succinyl-L,L-diaminopimelic acid by the dapE-encoded desuccinylase is required for the bacterial synthesis of lysine and meso-diaminopimelic acid. We have investigated the catalytic mechanism of the recombinant enzyme from Haemophilus influenzae. The desuccinylase was overexpressed in Escherichia coli and purified to homogeneity.
View Article and Find Full Text PDFAn important early event in the differentiation of skeletal muscle cells is exit from the cell cycle, after which full expression of the muscle phenotype occurs. Rhabdomyosarcoma (RMS), a tumor of skeletal muscle origin, expresses a number of muscle-specific proteins, including MyoD; however, these cells fail to arrest or differentiate when cultured in differentiation medium (DM). To determine the basis for the failure of RMS cells to differentiate or arrest, we studied the molecular response of the embryonal RMS cell line, RD, to culture in DM.
View Article and Find Full Text PDFSeveral lines of evidence indicate that serine/threonine protein phosphatases may act as negative regulators of cellular growth. For example, treatment of cells with the tumor-promoter okadaic acid, an inhibitor of certain types of these phosphatases, resulted in the increased expression of several proto-oncogenes, indicating a negative role of the respective phosphatases in gene regulation. However, it was puzzling to find that okadaic acid-treated cells, even in the presence of highly expressed proto-oncogenes, did not proliferate, but were arrested at certain points of the cell cycle.
View Article and Find Full Text PDF