Currently available approaches for treating human coronary heart disease aim to relieve symptoms and the risk of myocardial infarction by reducing myocardial oxygen demand (drugs), preventing further disease progression (drugs), restoring coronary blood flow either pharmacologically (thrombolysis) or mechanically (angioplasty), or bypassing the stenotic lesions and obstructed coronary artery segments (surgery). Direct gene therapy, as well as gene-derived therapy, especially by angiogenic growth factors, is emerging as a potential new treatment for cardiovascular disease. After extensive experimental research on angiogenic growth factors, the first clinical studies on patients with coronary heart disease or peripheral vascular lesions are being performed.
View Article and Find Full Text PDFExpert Opin Investig Drugs
December 1998
Currently available approaches for treating human coronary heart disease aim to relieve symptoms and the risk of myocardial infarction either by reducing myocardial oxygen demand, preventing further disease progression, restoring coronary blood flow pharmacologically or mechanically, or bypassing the stenotic lesions and obstructed coronary artery segments. Gene therapy, especially using angiogenic growth factors, has emerged recently as a potential new treatment for cardiovascular disease. Following extensive experimental research on angiogenic growth factors, the first clinical studies on patients with coronary heart disease and peripheral vascular lesions have been performed.
View Article and Find Full Text PDFCurr Interv Cardiol Rep
July 1999
Currently available approaches for treating human coronary heart disease aim to relieve symptoms and the risk of myocardial infarction either by reducing myocardial oxygen demand, preventing further disease progression, restoring coronary blood flow pharmacologically or mechanically, or bypassing the stenotic lesions and obstructed coronary artery segments. Gene therapy, especially using angiogenic growth factors, has emerged recently as a potential new treatment for cardiovascular disease. Following extensive experimental research on angiogenic growth factors, the first clinical studies on patients with coronary heart disease and peripheral vascular lesions have been performed.
View Article and Find Full Text PDFThe rapid development of angiogenic growth factor therapy for patients with advanced ischemic heart disease over the last 5 years offers hope of a new treatment strategy based on generation of new blood supply in the diseased heart. However, as the field of therapeutic coronary angiogenesis is maturing from basic and preclinical investigations to clinical trials, many new and presently unresolved issues are coming into focus. These include in-depth understanding of the biology of angiogenesis, selection of appropriate patient populations for clinical trials, choice of therapeutic end points and means of their assessment, choice of therapeutic strategy (gene versus protein delivery), route of administration, and the side effect profile.
View Article and Find Full Text PDF