Publications by authors named "THIEL W"

Aptamers are short single-stranded DNA or RNA molecules with high affinity and specificity for targets and are generated using the iterative systematic evolution of ligands by exponential enrichment (SELEX) process. Next-generation sequencing (NGS) revolutionized aptamer selections by allowing a more comprehensive analysis of SELEX-enriched aptamers as compared to Sanger sequencing. The current challenge with aptamer NGS datasets is identifying a diverse cohort of candidate aptamers with the highest likelihood of successful experimental validation.

View Article and Find Full Text PDF

Background: The outer mitochondrial Rho GTPase 1, MIRO1, mediates mitochondrial motility within cells, but implications for vascular smooth muscle cell (VSMC) physiology and its roles invascular diseases, such as neointima formation following vascular injury are widely unknown.

Methods: An in vivo model of selective Miro1 deletion in VSMCs was generated, and the animals were subjected to carotid artery ligation. The molecular mechanisms relevant to VSMC proliferation were then explored in explanted VSMCs by imaging mitochondrial positioning and cristae structure and assessing the effects on ATP production, metabolic function and interactions with components of the electron transport chain (ETC).

View Article and Find Full Text PDF

Background: The pursuit of selective therapeutic delivery to target tissue types represents a key goal in the treatment of a range of adverse health issues, including diseases afflicting the heart. The development of new cardiac-specific ligands is a crucial step towards effectively targeting therapeutics to the heart.

Methods: Utilizing an and SELEX approaches, we enriched a library of 2'-fluoro modified aptamers for ventricular cardiomyocyte specificity.

View Article and Find Full Text PDF

Studies of marine fish have revealed distant relatives of viruses important to global fish and animal health, but few such studies exist for freshwater fish. To investigate whether freshwater fish also host such viruses, we characterized the viromes of five wild species of freshwater fish in Wisconsin, USA: bluegill (), brown trout (), lake sturgeon (), northern pike (), and walleye (). We analyzed 103 blood serum samples collected during a state-wide survey from 2016 to 2020 and used a metagenomic approach for virus detection to identify known and previously uncharacterized virus sequences.

View Article and Find Full Text PDF

Aptamers are short single-stranded DNA or RNA molecules with high affinity and specificity for targets and are generated using the iterative Systematic Evolution of Ligands by EXponential enrichment (SELEX) process. Next-generation sequencing (NGS) revolutionized aptamer selections by allowing a more comprehensive analysis of SELEX-enriched aptamers as compared to Sanger sequencing. The current challenge with aptamer NGS datasets is identifying a diverse cohort of candidate aptamers with the highest likelihood of successful experimental validation.

View Article and Find Full Text PDF

Despite improvements in B cell acute lymphoblastic leukemia (B-ALL) treatment, a significant number of patients experience relapse of the disease, resulting in poor prognosis and high mortality. One of the drawbacks of current B-ALL treatments is the high toxicity associated with the non-specificity of chemotherapeutic drugs. Targeted therapy is an appealing strategy to treat B-ALL to mitigate these toxic off-target effects.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates binuclear coinage metal phosphine complexes using ion trap isolation to analyze their noncovalent interactions, structures, and electronic transitions.
  • - Six complexes featuring different combinations of copper, silver, and gold showed a specific order of electronic transitions, with variations noted in hypsochromic shift and binding strengths upon excitation.
  • - The findings, supported by quantum chemical calculations, reveal that the differences in electronic transitions are linked to the orbital contributions from the metals involved, suggesting that metal composition significantly affects spectroscopic properties.
View Article and Find Full Text PDF

The EphA2 receptor tyrosine kinase is overexpressed in most solid tumors and acts as the major driver of tumorigenesis. In this study, we developed a novel approach for targeting the EphA2 receptor using a 2'-fluoro-modified pyrimidine RNA aptamer termed ATOP. We identified the ATOP EphA2 aptamer using a novel bioinformatics strategy that compared aptamers enriched during a protein SELEX using recombinant human EphA2 and a cell-internalization SELEX using EphA2-expressing MDA231 tumor cells.

View Article and Find Full Text PDF

Periodic mesoporous organosilicas (PMOs) are high surface area organic-inorganic hybrid nanomaterials that have found broad applications in various fields of research such as in (bio)chemistry or material science. By choosing suitable organic groups in the framework of these materials, their surface properties such as polarity, optical/electrical characteristics and adsorption capacity can be tuned. This critical review provides an overview of the current state of the art in the developments and applications of some PMO nanomaterials in diverse fields of research.

View Article and Find Full Text PDF

[Ru(bipyridine)(nicotinamide)] (1) and its monoaqua-complex [Ru(bipyridine)(nicotinamide)(HO)] (2) were spectroscopically studied for the first time in the gas phase by static and time resolved UV photodissociation spectroscopy, observing nicotinamide and HO ligand dissociation for 1 and 2, respectively. Both processes and their ultrafast dynamics were investigated in parallel by transient absorption spectroscopy in aqueous solution. The latter data were newly acquired for the long-wavelength MLCT band excitation of 1 and provide novel ultrafast ligand dissociation results for 2, confirming the gas phase results, , exclusive HO cleavage over nicotinamide loss.

View Article and Find Full Text PDF

Janus materials are anisotropic nano- and microarchitectures with two different faces consisting of distinguishable or opposite physicochemical properties. In parallel with the discovery of new methods for the fabrication of these materials, decisive progress has been made in their application, for example, in biological science, catalysis, pharmaceuticals, and, more recently, in battery technology. This Minireview systematically covers recent and significant achievements in the application of task-specific Janus nanomaterials as heterogeneous catalysts in various types of chemical reactions, including reduction, oxidative desulfurization and dye degradation, asymmetric catalysis, biomass transformation, cascade reactions, oxidation, transition-metal-catalyzed cross-coupling reactions, electro- and photocatalytic reactions, as well as gas-phase reactions.

View Article and Find Full Text PDF

Microglia are known for important phagocytic functions in the vertebrate retina. Reports also suggest that Müller glia have phagocytic capacity, though the relative levels and contexts in which this occurs remain to be thoroughly examined. Here, we investigate Müller glial engulfment of dying cells in the developing zebrafish retina in the presence and absence of microglia, using a genetic mutant in which microglia do not develop.

View Article and Find Full Text PDF

Transcriptome analyses performed in both human and zebrafish indicate strong expression of Apoe and Apoc1 by microglia. Apoe expression by microglia is well appreciated, but Apoc1 expression has not been well-examined. PPAR/RXR and LXR/RXR receptors appear to regulate expression of the apolipoprotein gene cluster in macrophages, but a similar role in microglia in vivo has not been studied.

View Article and Find Full Text PDF

Synthesis of a Janus periodic mesoporous organosilica material (JPMO) is presented here. In this strategy, the surface of the hollow silica material was selectively functionalized with two different bridged organic-inorganic hybrid groups. It was found that the resulting bifunctional material is able to form a stable Pickering emulsion.

View Article and Find Full Text PDF

A heterogeneous Janus-type palladium interphase catalyst was obtained by selective surface modification of a hollow mesoporous silica material. The catalyst comprises hydrophobic octyl groups on one side of the silica nanosheets and single-site bis-imidazoline dichlorido palladium(II) complexes on the other. The structure of this composite material has been analyzed by means of elemental analysis, atomic absorption spectroscopy, BET surface analysis, TGA, SEM and solid-state CP-MAS C and Si NMR spectroscopy.

View Article and Find Full Text PDF

Since its inception in the early 1990s, SELEX remains the gold standard for discovering RNA aptamers specific for proteins and small molecules. The SELEX process has undergone countless modifications and now encompasses a breadth of innovative selection schemes to pare an aptamer library toward target-specific aptamers. Common to all these RNA aptamer SELEX processes are the steps for the preparation of DNA template and transcription of aptamer RNA.

View Article and Find Full Text PDF

Antibiotic resistance is a major threat to global health; this problem can be addressed by the development of new antibacterial agents to keep pace with the evolutionary adaptation of pathogens. Computational approaches are essential tools to this end since their application enables fast and early strategical decisions in the drug development process. We present a rational design approach, in which acylide antibiotics were screened based on computational predictions of solubility, membrane permeability, and binding affinity toward the ribosome.

View Article and Find Full Text PDF

Nucleophilic substitution of [(η -cyclopentadienyl)(η -chlorobenzene)iron(II)] hexafluorophosphate with sodium imidazolate resulted in the formation of [(η -cyclopentadienyl)(η -phenyl)iron(II)]imidazole hexafluorophosphate. The corresponding dicationic imidazolium salt, which was obtained by treating this imidazole precursor with methyl iodide, underwent cyclometallation with bis[dichlorido(η -1,2,3,4,5-pentamethylcyclopentadienyl]iridium(III) in the presence of triethyl amine. The resulting bimetallic iridium(III) complex is the first example of an NHC complex bearing a cationic and cyclometallated [(η -cyclopentadienyl)(η -phenyl)iron(II)] substituent.

View Article and Find Full Text PDF

We herein describe a rational design of a heterogeneous catalyst composed of a dinuclear cuprate anion being immobilized electrostatically on one surface of Janus-type nanosheets while the other surface is decorated with highly hydrophobic octyl groups. The catalyst was found to be well dispersible in the organic phase of a biphasic aqueous/organic mixture. It was characterized by means of elemental analysis, atomic absorption spectroscopy, mass spectrometry, N absorption-desorption analysis, thermogravimetric analysis, scanning electron microscopy (SEM), and solid-state C and Si cross-polarization magic-angle spinning nuclear magnetic resonance spectroscopy.

View Article and Find Full Text PDF

The Cu-catalyzed alkyne-azide 1,3-dipolar cycloaddition variant provides a highly efficient entry to conjugated triazolyl-substituted (oligo)phenothiazine organosilicon derivatives with luminescence and reversible redox characteristics. Furthermore, by in-situ co-condensation synthesis several representative mesoporous MCM-41 type silica hybrid materials with embedded (oligo)phenothiazines are prepared and characterized with respect to their structural and electronic properties. The hybrid materials also can be oxidized to covalently bound embedded radical cations, which are identified by their UV/Vis absorption signature and EPR signals.

View Article and Find Full Text PDF

A concept for the quantification of cooperative effects in transition-metal complexes is presented. It is demonstrated for a series of novel N,N- (mononuclear) and C,N-coordinated homo- and heterometallic binuclear complexes based on the (2-dimethylamino)-4-(2-pyrimidinyl)pyrimidine ligand, which are accessible by applying roll-over cyclometallation. These iridium-, platinum-, and palladium-containing compounds are investigated with respect to their absorption and fluorescence spectra.

View Article and Find Full Text PDF

Serological assays were conducted for anti-viral hemorrhagic septicemia virus (VHSV) antibodies in four species of fish in Wisconsin (Bluegill Lepomis macrochirus, Brown Trout Salmo trutta, Northern Pike Esox lucius, and Walleye Sander vitreus) to examine spatial and temporal distributions of exposure. Sera were tested for non-neutralizing anti-nucleocapsid antibodies to VHSV by blocking enzyme-linked immunosorbent assay (ELISA). Results (percent inhibition [%I]) were analyzed for differences among species, across geographic distance, and among water management units.

View Article and Find Full Text PDF

Palmar plantar erythrodysesthesia (hand-foot syndrome, HFS) is a common adverse event of treatment with cytostatic chemotherapeutics such as capecitabine. Histopathological findings are nonspecific and may even include generalized epidermal necrolysis. A total of 50 patients were examined before and after the intake of capecitabine to assess if HFS may result in relevant changes of the palmar epidermal ridge configurations with possible consequences for the patients who want to travel abroad.

View Article and Find Full Text PDF
Article Synopsis
  • VHSV is a significant cause of fish disease and death in the Great Lakes, prompting the need for effective detection methods.
  • An ELISA test was evaluated for its ability to detect antibodies in Northern Pike post-VHSV infection, showing an antibody response within 2 weeks.
  • The study found variability in the antibody response and determined that the ELISA has an 80.5% sensitivity and 63.2% specificity, providing useful insights for managing VHSV in freshwater fish populations.
View Article and Find Full Text PDF

Two pentadentate N3,P2 ligands coordinate zinc(ii) by their N3 pocket. Four free phosphine donors allow the coordination of four AuCl moieties leading to a pentanuclear ZnAu4 complex. In contrast, the attempt to use the phosphines for chelating coordination of two Rh(CO)Cl units results in a well-organized rearrangement that ends up with the formation of a metallomacrocycle in high yields.

View Article and Find Full Text PDF