Publications by authors named "TH Osborne"

The tokamak approach, utilizing a toroidal magnetic field configuration to confine a hot plasma, is one of the most promising designs for developing reactors that can exploit nuclear fusion to generate electrical energy. To reach the goal of an economical reactor, most tokamak reactor designs simultaneously require reaching a plasma line-averaged density above an empirical limit-the so-called Greenwald density-and attaining an energy confinement quality better than the standard high-confinement mode. However, such an operating regime has never been verified in experiments.

View Article and Find Full Text PDF

The anaerobic bacterium respires using the oxyanion arsenate (AsO) as the terminal electron acceptor, where it is reduced to arsenite (AsO) while concomitantly oxidizing various organic (e.g., acetate) electron donors.

View Article and Find Full Text PDF

The family Rhizobiaceae includes many genera of soil bacteria, often isolated for their association with plants. Herein, we investigate the genomic diversity of a group of Rhizobium species and unclassified strains isolated from atypical environments, including seawater, rock matrix or polluted soil. Based on whole-genome similarity and core genome phylogeny, we show that this group corresponds to the genus Pseudorhizobium.

View Article and Find Full Text PDF

(synonym, ) is a highly specific mycoparasite of the wide host range crop pathogen . The capability of to destroy the sclerotia of has been well recognized and it is available as a widely used biocontrol product Contans WG. We present the draft genome sequence of Conio (IMI 134523), which has previously been used in extensive studies that formed part of a registration package of the commercial product.

View Article and Find Full Text PDF

The structure of the edge plasma in a magnetic confinement system has a strong impact on the overall plasma performance. We uncover for the first time a magnetic-field-direction dependent density shelf, i.e.

View Article and Find Full Text PDF

Arsenate respiration by bacteria was discovered over two decades ago and is catalyzed by diverse organisms using the well-conserved Arr enzyme complex. Until now, the mechanisms underpinning this metabolism have been relatively opaque. Here, we report the structure of an Arr complex (solved by X-ray crystallography to 1.

View Article and Find Full Text PDF

The majority of the population of Bangladesh (90%) rely on untreated groundwater for drinking and domestic use. At the point of collection, 40% of these supplies are contaminated with faecal indicator bacteria (FIB). Recent studies have disproved the theory that latrines discharging to shallow aquifers are the major contributor to this contamination.

View Article and Find Full Text PDF
Article Synopsis
  • Over 140 million people globally are affected by arsenic contamination in drinking water, which poses significant toxicity to humans.
  • Arsenite and arsenate, inorganic forms of arsenic, can be used by some microbes as energy sources, highlighting a unique aspect of microbial respiration.
  • The study reveals AioX and its related proteins function as key regulators in arsenic metabolism, with structural analysis showing specific adaptations in protein binding that influence selectivity between arsenite and arsenate, indicating a complex evolutionary relationship.
View Article and Find Full Text PDF

Rapid bifurcations in the plasma response to slowly varying n=2 magnetic fields are observed as the plasma transitions into and out of edge-localized mode (ELM) suppression. The rapid transition to ELM suppression is characterized by an increase in the toroidal rotation and a reduction in the electron pressure gradient at the top of the pedestal that reduces the perpendicular electron flow there to near zero. These events occur simultaneously with an increase in the inner-wall magnetic response.

View Article and Find Full Text PDF

Natural pollution of groundwater by arsenic adversely affects the health of tens of millions of people worldwide, with the deltaic aquifers of SE Asia being particularly polluted. The pollution is caused primarily by, or as a side reaction of, the microbial reduction of sedimentary Fe(III)-oxyhydroxides, but the organism(s) responsible for As release have not been isolated. Here we report the first isolation of a dissimilatory arsenate reducer from sediments of the Bengal Basin in West Bengal.

View Article and Find Full Text PDF

Arsenic and antimony are toxic metalloids and are considered priority environmental pollutants by the U.S. Environmental Protection Agency.

View Article and Find Full Text PDF

A path to a new high performance regime has been discovered in tokamaks that could improve the attractiveness of a fusion reactor. Experiments on DIII-D using a quiescent H-mode edge have navigated a valley of improved edge peeling-ballooning stability that opens up with strong plasma shaping at high density, leading to a doubling of the edge pressure over the standard H mode with edge localized modes at these parameters. The thermal energy confinement time increases as a result of both the increased pedestal height and improvements in the core transport and reduced low-k turbulence.

View Article and Find Full Text PDF

One of the issues facing the nuclear power industry is how to store spent nuclear fuel which is contaminated with radionuclides produced during nuclear fission, including caesium ((134)Cs(+), (135)Cs(+) and (137)Cs(+)) and cobalt ((60)Co(2+)). In this study, we have isolated Co(2+)- and Cs(+)-resistant bacteria from water collected from a nuclear fuel storage pond. The most resistant Cs(+) and Co(2+) isolates grew in the presence of 500 mM CsCl and 3 mM CoCl2.

View Article and Find Full Text PDF

Comprehensive 2D turbulence and eddy flow velocity measurements on DIII-D demonstrate a rapidly increasing turbulence-driven shear flow that develops ∼100  μs prior to the low-confinement (L mode) to high-confinement (H mode) transition and appears to trigger it. These changes are localized to a narrow layer 1-2 cm inside the magnetic boundary. Increasing heating power increases the Reynolds stress, the energy transfer from turbulence to the poloidal flow, and the edge flow shearing rate that then exceeds the decorrelation rate, suppressing turbulence and triggering the transition.

View Article and Find Full Text PDF

The 30 keV lithium beam diagnostic on DIII-D is suitable to measure both the radial electron density and poloidal magnetic field profiles in the pedestal. The refurbished system features a new setup to measure the Doppler shift allowing accurate alignment of the spectral filters. The injector has been optimized to generate a stable lithium neutral beam with a current of I = 15-20 mA and a diameter of 1.

View Article and Find Full Text PDF

High repetition rate injection of deuterium pellets from the low-field side (LFS) of the DIII-D tokamak is shown to trigger high-frequency edge-localized modes (ELMs) at up to 12× the low natural ELM frequency in H-mode deuterium plasmas designed to match the ITER baseline configuration in shape, normalized beta, and input power just above the H-mode threshold. The pellet size, velocity, and injection location were chosen to limit penetration to the outer 10% of the plasma. The resulting perturbations to the plasma density and energy confinement time are thus minimal (<10%).

View Article and Find Full Text PDF

Polaromonas sp. str. GM1 is an aerobic, psychrotolerant, heterotrophic member of the Betaproteobacteria and is the only isolate capable of oxidising arsenite at temperatures below 10 °C.

View Article and Find Full Text PDF

Validation of models of pedestal structure is an important part of predicting pedestal height and performance in future tokamaks. The Thomson scattering diagnostic at DIII-D has been upgraded in support of validating these models. Spatial and temporal resolution, as well as signal to noise ratio, have all been specifically enhanced in the pedestal region.

View Article and Find Full Text PDF

The instrument function of the high resolution Thomson scattering (HRTS) diagnostic in the Joint European Torus (JET) has been calculated for use in improved pedestal profile analysis. The full width at half maximum (FWHM) of the spatial instrument response is (22 ± 1) mm for the original HRTS system configuration and depends on the particular magnetic topology of the JET plasmas. An improvement to the optical design of the laser input system is presented.

View Article and Find Full Text PDF

Lithium wall coatings have been shown to reduce recycling, improve energy confinement, and suppress edge localized modes in the National Spherical Torus Experiment. Here, we show that these effects depend continuously on the amount of predischarge lithium evaporation. We observed a nearly monotonic reduction in recycling, decrease in electron transport, and modification of the edge profiles and stability with increasing lithium.

View Article and Find Full Text PDF

A set of high frequency coherent (HFC) modes (f=80-250 kHz) is observed with beam emission spectroscopy measurements of density fluctuations in the pedestal of a strongly shaped quiescent H-mode plasma on DIII-D, with characteristics predicted for kinetic ballooning modes (KBM): propagation in the ion-diamagnetic drift direction; a frequency near 0.2-0.3 times the ion-diamagnetic frequency; inferred toroidal mode numbers of n∼10-25; poloidal wave numbers of k(θ)∼0.

View Article and Find Full Text PDF

Deconvolution of Thomson scattering (TS) profiles is required when the gradient length of the electron temperature (T(e)) or density (n(e)) are comparable to the instrument function length (Δ(R)). The most correct method for deconvolution to obtain underlying T(e) and n(e) profiles is by consideration of scattered signals. However, deconvolution at the scattered signal level is complex since it requires knowledge of all spectral and absolute calibration data.

View Article and Find Full Text PDF

We report observation of a new high performance regime in discharges in the National Spherical Torus Experiment, where the H mode edge "pedestal" temperature doubles and the energy confinement increases by 50%. The spontaneous transition is triggered by a large edge-localized mode, either natural or externally triggered by 3D fields. The transport barrier grows inward from the edge, with a doubling of both the pedestal pressure width and the spatial extent of steep radial electric field shear.

View Article and Find Full Text PDF