The control of electronic and thermal transport through material interfaces is crucial for numerous micro and nanoelectronics applications and quantum devices. Here we report on the engineering of the electro-thermal properties of semiconductor-superconductor (Sm-S) electronic cooler junctions by a nanoscale insulating tunnel barrier introduced between the Sm and S electrodes. Unexpectedly, such an interface barrier does not increase the junction resistance but strongly reduces the detrimental sub-gap leakage current.
View Article and Find Full Text PDFSuspended crystalline Ge semiconductor structures are created on a Si(001) substrate by a combination of epitaxial growth and simple patterning from the front surface using anisotropic underetching. Geometric definition of the surface Ge layer gives access to a range of crystalline planes that have different etch resistance. The structures are aligned to avoid etch-resistive planes in making the suspended regions and to take advantage of these planes to retain the underlying Si to support the structures.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
September 2002
A method to calculate a smooth electrical conductivity versus mobility plot ("mobility spectrum") from the classical magnetoconductivity tensor in heterogeneous structures with the help of a "maximum entropy principle" has been developed. In this approach the closeness of the fit and the entropy of the mobility spectrum are optimized. The spectrum is then the most probable one with the least influence of the personal bias of the investigator for any given set of experimental data and is maximally noncommittal with regard to the unmeasured data.
View Article and Find Full Text PDFPhys Rev B Condens Matter
October 1995
Phys Rev B Condens Matter
April 1993