Publications by authors named "TD Kieu"

We derive some quantum central limit theorems for the expectation values of macroscopically coarse-grained observables, which are functions of coarse-grained Hermitian operators consisting of non-commuting variables. Thanks to the Hermiticity constraints, we obtain positive-definite distributions for the expectation values of observables. These probability distributions open some pathway for the emergence of classical behaviours in the limit of an infinitely large number of identical and non-interacting quantum constituents.

View Article and Find Full Text PDF

With a class of quantum heat engines which consists of two-energy-eigenstate systems undergoing, respectively, quantum adiabatic processes and energy exchanges with heat baths at different stages of a cycle, we are able to clarify some important aspects of the second law of thermodynamics. The quantum heat engines also offer a practical way, as an alternative to Szilard's engine, to physically realize Maxwell's demon. While respecting the second law on the average, they are also capable of extracting more work from the heat baths than is otherwise possible in thermal equilibrium.

View Article and Find Full Text PDF