Publications by authors named "TD Chung"

Drug delivery systems hold promise for delivering cytotoxic drugs by controlling the timing and location of the drug release. However, conventional delivery mechanisms often fall short of achieving spatiotemporally controlled yet sustained release, which is crucial for ensuring drug efficacy and minimizing impact on surrounding tissues. Here, an ionic diode-based drug delivery system is reported that is controlled by an electric potential and capable of releasing drugs at scales ranging from nanogram to microgram.

View Article and Find Full Text PDF

The selection of electrode material is a critical factor that determines the selectivity of electrochemical organic reactions. However, the fundamental principles governing this relationship are still largely unexplored. Herein, we demonstrate a photoelectrocatalytic (PEC) system as a promising reaction platform for the selective radical-radical coupling reaction owing to the inherent charge-transfer properties of photoelectrocatalysis.

View Article and Find Full Text PDF

Scanning electrochemical cell microscopy (SECCM) has been used to explore structure-electrocatalytic activity relationships through high-resolution mapping of local activities of electrocatalysts. However, utilizing SECCM in strongly alkaline conditions presents a significant challenge due to the high wettability of the alkaline electrolyte leading to a substantial instability of the droplet in contact with the sample surface, and hence to unpredictable wetting and spreading of the electrolyte. The spreading phenomena in SECCM is confirmed by the electrochemical response of a free-diffusing redox probe and finite element method (FEM) simulations.

View Article and Find Full Text PDF

Blood cell counting typically requires complex machinery. Flow cytometers used for this purpose involve precise optical alignment, costly detectors, and pretreatment with fluorescent labels. Coulter countertype devices, which monitor ion current, are simpler.

View Article and Find Full Text PDF

Interactions between endothelial cells (ECs) and mural pericytes (PCs) are critical in maintaining the stability and function of the microvascular wall. Abnormal interactions between these two cell types are a hallmark of progressive fibrotic diseases such as systemic sclerosis (also known as scleroderma). However, the role of PCs in signaling microvascular dysfunction remains underexplored.

View Article and Find Full Text PDF

Monitoring the dendritic electrodeposition process is crucial in various fields such as energy storage devices and sensors. A variety of dendritic growth monitoring methods have been developed, especially for battery applications, but they require specialized cells and equipment and are often invasive, making them unsuitable for various electrochemical systems and commercial batteries. To address these challenges, a real-time impedance analysis technique was used to determine dendritic electrodeposition on microelectrodes.

View Article and Find Full Text PDF

Advancements in neural interface technologies have enabled the direct connection of neurons and electronics, facilitating chemical communication between neural systems and external devices. One promising approach is a synaptogenesis-involving method, which offers an opportunity for synaptic signaling between these systems. Janus synapses, one type of synaptic interface utilizing synaptic cell adhesion molecules for interface construction, possess unique features that enable the determination of location, direction of signal flow, and types of neurotransmitters involved, promoting directional and multifaceted communication.

View Article and Find Full Text PDF

High-entropy alloys (HEAs), especially in the form of compositional complex solid solutions (CCSS), have gained attention in the field of electrocatalysis. However, exploring their vast composition space concerning their electrocatalytic properties imposes significant challenges. Scanning electrochemical cell microscopy (SECCM) offers high-speed electrochemical analysis on surface areas with a lateral resolution down to tens of nm.

View Article and Find Full Text PDF

A practical method for C(sp)-B bond activation was developed. Using a combination of alkyl trifluoroborates and -iodosuccinimide (NIS), various C(sp)-heteroatom bonds were readily generated in an efficient manner. Mechanistic studies revealed the bifunctional ability of NIS: mediating the formation of reactive halogenated intermediates and activating them via halogen bonding.

View Article and Find Full Text PDF

Mitochondrial uridine insertion/deletion RNA editing, catalyzed by a multiprotein complex (editosome), is essential for gene expression in trypanosomes and Leishmania parasites. As this process is absent in the human host, a drug targeting this mechanism promises high selectivity and reduced toxicity. Here, we successfully miniaturized our FRET-based full-round RNA editing assay, which replicates the complete RNA editing process, adapting it into a 1536-well format.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) is located at the interface between the vascular system and the brain parenchyma, and is responsible for communication with systemic circulation and peripheral tissues. During life, the BBB can be subjected to a wide range of perturbations or stresses that may be endogenous or exogenous, pathological or therapeutic, or intended or unintended. The risk factors for many diseases of the brain are multifactorial and involve perturbations that may occur simultaneously (e.

View Article and Find Full Text PDF

Metastatic brain cancer has poor prognosis due to challenges in both detection and treatment. One contributor to poor prognosis is the blood-brain barrier (BBB), which severely limits the transport of therapeutic agents to intracranial tumors. During the development of brain metastases from primary breast cancer, the BBB is modified and is termed the 'blood-tumor barrier' (BTB).

View Article and Find Full Text PDF

Viruses have unique coat proteins that are genetically modifiable. Their surface can serve as a nano-template on which electroactive molecules are immobilized. In this study, we report filamentous bacteriophage as a backbone to which redox mediators are covalently and densely tethered, constructing redox nanowire, i.

View Article and Find Full Text PDF

Living cells efflux intracellular ions for maintaining cellular life, so intravital measurements of specific ion signals are of significant importance for studying cellular functions and pharmacokinetics. In this work, de novo synthesis of artificial K -selective membrane and its integration with polyelectrolyte hydrogel-based open-junction ionic diode (OJID) is demonstrated, achieving a real-time K -selective ion-to-ion current amplification in complex bioenvironments. By mimicking biological K channels and nerve impulse transmitters, in-line K -binding G-quartets are introduced across freestanding lipid bilayers by G-specific hexylation of monolithic G-quadruplex, and the pre-filtered K flow is directly converted to amplified ionic currents by the OJID with a fast response time at 100 ms intervals.

View Article and Find Full Text PDF
Article Synopsis
  • - Seamless neural interfaces that combine neurons with electrochemical devices can enhance communication between neural systems and the outside world by using the same chemical signals that neurons naturally communicate with.
  • - New strategies like synaptic interfaces, iontronics for neuromodulation, and advanced neurosensing techniques are being developed to create efficient connections for neuro-electronic communication.
  • - This perspective highlights ongoing innovations to improve the interaction between neurons and electrodes, focusing on targeting specific parts of neurons, such as synapses, while also discussing advancements in electrochemical sensing and chemical delivery through iontronics.
View Article and Find Full Text PDF

Room temperature ionic liquids (RT-ILs) are promising electrolytes for electrocatalysis. Understanding the effects of the electrode-electrolyte interface structure on electrocatalysis in RT-ILs is important. Ultrafast mass transport of redox species in N-methyl-N-ethyl-pyrrolidinium polybromide (MEPBr) enabled evaluation of the reorganization energy (λ), which reflects the solvation structure in the inner Helmholtz plane (IHP).

View Article and Find Full Text PDF

Two-electrode (2E) system of the interdigitated electrode array (IDA), which operates neither reference nor counter electrodes, has great potential to miniaturize multiplex immunoassay in a microfluidic chip for point-of-care testing. However, it is necessary to firmly immobilize the mediator layer on IDA made of indium tin oxide (ITO) which is chemically inert. It is important because the mediator determines the electrochemical potential in the 2E system, but the layer is easy to be detached during the washing processes of immunoassay.

View Article and Find Full Text PDF

Angiogenesis plays an essential role in embryonic development, organ remodeling, wound healing, and is also associated with many human diseases. The process of angiogenesis in the brain during development is well characterized in animal models, but little is known about the process in the mature brain. Here, we use a tissue-engineered post-capillary venule (PCV) model incorporating stem cell derived induced brain microvascular endothelial-like cells (iBMECs) and pericyte-like cells (iPCs) to visualize the dynamics of angiogenesis.

View Article and Find Full Text PDF

In this study, an aqueous nonlinear synaptic element showing plasticity behavior is developed, which is based on the chemical processes in an ionic diode. The device is simple, fully ionic, and easily configurable, requiring only two terminals-for input and output-similar to biological synapses. The key processes realizing the plasticity features are chemical precipitation and dissolution, which occur at forward- or reverse-biased ionic diode junctions in appropriate reservoir electrolytes.

View Article and Find Full Text PDF

blood-brain barrier (BBB) models have played an important role in studying processes such as immune cell trafficking and drug delivery, as well as contributing to the understanding of mechanisms of disease progression. Many biological and pathological processes in the cerebrovasculature occur in capillaries and hence the lack of robust hierarchical models at the capillary scale is a major roadblock in BBB research. Here we report on a double-templating technique for engineering hierarchical BBB models with physiological barrier function at the capillary scale.

View Article and Find Full Text PDF

Lyme disease is a tick-borne disease prevalent in North America, Europe, and Asia. Despite the accumulated knowledge from epidemiological, in vitro, and in animal studies, the understanding of dissemination of vector-borne pathogens, such as Borrelia burgdorferi (Bb), remains incomplete with several important knowledge gaps, especially related to invasion and intravasation into circulation. To elucidate the mechanistic details of these processes a tissue-engineered human dermal microvessel model is developed.

View Article and Find Full Text PDF

In ionic liquids (ILs), the electric double layer (EDL) is where heterogeneous electron transfer (ET) occurs. Nevertheless, the relationship between the EDL structure and its kinetics has been rarely studied, especially for ET taking place in the inner Helmholtz plane (IHP). This is largely because of the lack of an appropriate model system for experiments.

View Article and Find Full Text PDF

Based on systematic electrochemical analysis, an integrated synthetic platform of C(sp)-based organoboron compounds was established for the introduction of heteroatoms. The electrochemically mediated bond-forming strategy was shown to be highly effective for the functionalization of sp-hybridized carbon atoms with significant steric hindrance. Moreover, virtually all the nonmetallic heteroatoms could be utilized as reaction partners using one unified protocol.

View Article and Find Full Text PDF

Oxidative stress is a shared pathology of neurodegenerative disease and brain injuries, and is derived from perturbations to normal cell processes by aging or environmental factors such as UV exposure and air pollution. As oxidative cues are often present in systemic circulation, the blood-brain barrier (BBB) plays a key role in mediating the effect of these cues on brain dysfunction. Therefore, oxidative damage and disruption of the BBB is an emergent focus of neurodegenerative disease etiology and progression.

View Article and Find Full Text PDF