A series of phosphorus(V), germanium(IV), and tin(IV) porphyrin-based, "axial-bonding"-type hybrid trimers have been readily constructed by employing a new "building-block" approach. The approach is modular in nature, and it involves simple "inorganic" reactions such as axial bond formation of main group element containing porphyrins and insertion of metal/"metalloid" ions into the porphyrin cavity. The architecture of these arrays is such that, while a phosphorus(V), germanium(IV), or tin(IV) complex of meso-5,10,15,20-(tetratolyl)porphyrin forms the basal scaffolding unit, the free-base, vanadyl, cobalt(II), nickel(II), copper(II), or zinc(II) porphyrins occupy the two axial sites via an aryloxy bridge.
View Article and Find Full Text PDFAryloxo derivatives of phosphorus(V) porphyrins of the type [(TpTP)P(OR)(2)](+)OH(-) where TpTP is the dianion of tetra-p-tolylporphyrin and OR is an axial aryloxo (2,4-dimethylphenoxo, 4-methylphenoxo, phenoxo, 4-nitrophenoxo, 4-(4-nitrophenoxy)phenoxo, or 4-(2,4-dinitrophenoxy)phenoxo) ligand have been synthesized and fully characterized by FAB-mass, UV-vis, fluorescence, infrared, and nuclear magnetic resonance ((1)H and (31)P) spectroscopies and cyclic voltammetric methods. Each new porphyrin shows a typical "normal UV-vis absorption spectrum" indicating the presence of a P(V) ion in the porphyrin cavity. The proton-decoupled (31)P NMR signal observed for these compounds, between -194 and -200 ppm, suggests that there exists an octahedral coordination around the phosphorus atom, and this supposition is further substantiated by the porphyrin ring-current-induced upfield shifts observed for protons on the two axial aryloxo ligands in the (1)H NMR spectra.
View Article and Find Full Text PDF