Schizotypal traits include abnormalities in cognition, behavior, and interpersonal relationships that are similar, yet less severe than psychotic symptomology. It is estimated that approximately 5% of the general population displays psychotic symptoms and experiences that can be considered schizotypal in nature, but there is little research examining the neurological correlates of these traits. The mismatch negativity (MMN) event-related potential is an objective measure of auditory change detection derived from electroencephalography.
View Article and Find Full Text PDFUsing electroencephalography (EEG) to examine the simple mismatch negativity (MMN), a marker of auditory cortex function, has been of great interest in the exploration of biomarkers for psychotic illness. Despite many studies reporting MMN deficits in chronic schizophrenia, there are inconsistent reports of MMN reductions in the early phases of psychotic illness, suggesting the MMN elicited by traditional paradigms may not be a sensitive enough measure of vulnerability to be used as a biomarker. Recently, a more computationally complex measure of auditory cortex function (the complex mismatch negativity; cMMN) has been hypothesized to provide a more sensitive marker of illness vulnerability.
View Article and Find Full Text PDFIndividuals with schizophrenia use on average twice as much caffeine than the healthy population, but the underlying cortical effects of caffeine in this population are still not well understood. Using resting electroencephalography (EEG) data, we can determine recurrent configurations of the electric field potential over the cortex. These configurations, referred to as microstates, are reported to be altered in schizophrenia and can give us insight into the functional dynamics of large-scale brain networks.
View Article and Find Full Text PDFIndividuals with schizophrenia use twice as much caffeine on average when compared to healthy controls. Knowing the high rates of consumption, and the potential negative effects of such, it is important we understand the cortical mechanisms that underlie caffeine use, and the consequences of caffeine use on neural circuits in this population. Using a randomized, placebo controlled, double-blind, repeated measures design, the current study examines caffeine's effects on resting electroencephalography (EEG) power in those who have been recently diagnosed with schizophrenia (SZ) compared to regular-using healthy controls (HC).
View Article and Find Full Text PDF