Publications by authors named "T-C Francis Pan"

Exogenous environmental factors alter growth rates, yet information remains scant on the biochemical mechanisms and energy trade-offs that underlie variability in the growth of marine invertebrates. Here we study the biochemical bases for differential growth and energy utilization (as adenosine triphosphate [ATP] equivalents) during larval growth of the bivalve Crassostrea gigas exposed to increasing levels of experimental ocean acidification (control, middle, and high pCO, corresponding to ∼400, ∼800, and ∼1100 µatm, respectively). Elevated pCO hindered larval ability to accrete both shell and whole-body protein content.

View Article and Find Full Text PDF

Animal size is a highly variable trait regulated by complex interactions between biological and environmental processes. Despite the importance of understanding the mechanistic bases of growth, predicting size variation in early stages of development remains challenging. Pedigreed lines of the Pacific oyster () were crossed to produce contrasting growth phenotypes to analyze the metabolic bases of growth variation in larval stages.

View Article and Find Full Text PDF

Energy is required to maintain physiological homeostasis in response to environmental change. Although responses to environmental stressors frequently are assumed to involve high metabolic costs, the biochemical bases of actual energy demands are rarely quantified. We studied the impact of a near-future scenario of ocean acidification [800 µatm partial pressure of CO2 (pCO2)] during the development and growth of an important model organism in developmental and environmental biology, the sea urchin Strongylocentrotus purpuratus.

View Article and Find Full Text PDF

Understanding and predicting biological stability and change in the face of rapid anthropogenic modifications of ecosystems and geosystems are grand challenges facing environmental and life scientists. Physiologically, organisms withstand environmental stress through changes in biochemical regulation that maintain homeostasis, which necessarily demands tradeoffs in the use of metabolic energy. Evolutionarily, in response to environmentally forced energetic tradeoffs, populations adapt based on standing genetic variation in the ability of individual organisms to reallocate metabolic energy.

View Article and Find Full Text PDF

The ontogeny of cardiac hypoxic responses, and how such responses may be modified by rearing environment, are poorly understood in amphibians. In this study, cardiac performance was investigated in Xenopus laevis from 2 to 25 days post-fertilization (dpf). Larvae were reared under either normoxia or moderate hypoxia (PO₂ = 110 mmHg), and each population was assessed in both normoxia and acute hypoxia.

View Article and Find Full Text PDF