Publications by authors named "T von Schantz"

Autologous fat transfer has recently become an increasingly popular surgical procedure and comprises harvesting, processing and transplantation of adipose tissue, as well as professional follow-up care. This method, as a surgical procedure, can be utilised for trauma-, disease- or age-related soft tissue volume deficits and soft tissue augmentation. As usage is increasing, but the variables of fat harvest, specific indications and fashion of fat transfer are poorly defined, there is a great demand for development of a guideline in the field of reconstructive and aesthetic surgery.

View Article and Find Full Text PDF

With adipose-derived stem cells being in the focus of research in regenerative medicine, the need arises for fast reliable cultivation protocols. We have tested the cultivation of human adipose-derived stem cells in endothelial cell growth medium prior to induction and differentiation, against the long-established use of DMEM/F12 medium-based cultivation protocols. We found that cultivation in endothelial cell growth medium not only accelerates growth before induction and differentiation, but also allows shorter induction and differentiation times than those following precultivation with DMEM/F12 medium with regard to the formation of mature adipocytes and to the viability undifferentiated cells.

View Article and Find Full Text PDF

A number of different processing techniques have been developed to design and fabricate three-dimensional (3D) scaffolds for tissue-engineering applications. The imperfection of the current techniques has encouraged the use of a rapid prototyping technology known as fused deposition modeling (FDM). Our results show that FDM allows the design and fabrication of highly reproducible bioresorbable 3D scaffolds with a fully interconnected pore network.

View Article and Find Full Text PDF