Publications by authors named "T de Wouters"

Background: The human gut microbiome produces and consumes a variety of compounds that interact with the host and impact health. Succinate is of particular interest as it intersects with both host and microbiome metabolism. However, which gut bacteria are most responsible for the consumption of intestinal succinate is poorly understood.

View Article and Find Full Text PDF

The anaerobic cultivation of fecal microbiota is a promising approach to investigating how gut microbial communities respond to specific intestinal conditions and perturbations. Here, we describe a flexible protocol using 96-deepwell plates to cultivate stool-derived gut microbiota. Our protocol aims to address gaps in high-throughput culturing in an anaerobic chamber.

View Article and Find Full Text PDF
Article Synopsis
  • The article discusses a specific research study published in a scientific journal focused on microbiology.
  • It highlights key findings related to microbial behavior or interactions, correcting previous information in the original publication.
  • The DOI (Digital Object Identifier) signifies a unique identifier for accessing the corrected version of the study online for further details.
View Article and Find Full Text PDF

Introduction: Microbial isolates from culture can be identified using 16S or whole-genome sequencing which generates substantial costs and requires time and expertise. Protein fingerprinting Matrix-assisted Laser Desorption Ionization-time of flight mass spectrometry (MALDI-TOF MS) is widely used for rapid bacterial identification in routine diagnostics but shows a poor performance and resolution on commensal bacteria due to currently limited database entries. The aim of this study was to develop a MALDI-TOF MS plugin database (CLOSTRI-TOF) allowing for rapid identification of non-pathogenic human commensal gastrointestinal bacteria.

View Article and Find Full Text PDF

The success of fecal microbiota transplants (FMT) has provided the necessary proof-of-concept for microbiome therapeutics. Yet, feces-based therapies have many associated risks and uncertainties, and hence defined microbial consortia that modify the microbiome in a targeted manner have emerged as a promising safer alternative to FMT. The development of such live biotherapeutic products has important challenges, including the selection of appropriate strains and the controlled production of the consortia at scale.

View Article and Find Full Text PDF