Background: Variability in sugar content between raw and cooked sweetpotato storage roots impact nutritional and dietary importance with implications for consumer preference. High-throughput phenotyping is required to breed varieties that satisfy consumer preferences.
Results: Near-infrared reflectance spectroscopy (NIRS) calibration curves were developed for analysing sugars in baked storage roots using 147 genotypes from a population segregating for sugar content and other traits.
Theor Appl Genet
January 2020
β-Carotene content in sweetpotato is associated with the Orange and phytoene synthase genes; due to physical linkage of phytoene synthase with sucrose synthase, β-carotene and starch content are negatively correlated. In populations depending on sweetpotato for food security, starch is an important source of calories, while β-carotene is an important source of provitamin A. The negative association between the two traits contributes to the low nutritional quality of sweetpotato consumed, especially in sub-Saharan Africa.
View Article and Find Full Text PDFA dynamic human gastrointestinal (GI) model was used to digest cooked tubers from purple-fleshed Amachi and Leona potato cultivars to study anthocyanin biotransformation in the stomach, small intestine and colonic vessels. Colonic Caco-2 cancer cells and non-tumorigenic colonic CCD-112CoN cells were tested for cytotoxicity and cell viability after 24 h exposure to colonic fecal water (FW) digests (0%, 10%, 25%, 75% and 100% FW in culture media). After 24 h digestion, liquid chromatography-mass spectrometry identified 36 and 15 anthocyanin species throughout the GI vessels for Amachi and Leona, respectively.
View Article and Find Full Text PDFThe purpose of the research was to develop and validate a rapid quantification method able to screen many samples of yam bean seeds to determine the content of two toxic polyphenols, namely pachyrrhizine and rotenone. The analytical procedure described is based on the use of an internal standard (dihydrorotenone) and is divided in three steps: microwave assisted extraction, purification by solid phase extraction and assay by ultra high performance liquid chromatography (UHPLC). Each step was included in the validation protocol and the accuracy profiles methodology was used to fully validate the method.
View Article and Find Full Text PDF