Publications by authors named "T Yu Kardash"

Introduction: Defensive responses to threat-associated cues are commonly evaluated using conditioned freezing or suppression of operant responding. However, rats display a broad range of behaviors and shift their defensive behaviors based on immediacy of threats and context. This study aimed to systematically quantify the defensive behaviors that are triggered in response to threat-associated cues and assess whether they can accurately be identified using DeepLabCut in conjunction with SimBA.

View Article and Find Full Text PDF

We investigated the possibility of synthesizing Co nanoparticles in CoZrH/AlO(OH)/Al ceramic-metal catalysts and controlling the catalytic properties of these nanoparticles in syngas conversion by changing the Co/Zr ratio. The CoZr nanocomposites were obtained from metal powders by mechanochemical activation in a high-energy mill under an argon atmosphere, followed by treatment with hydrogen at high pressure and room temperature. Ceramic-metal catalysts were prepared by mixing the corresponding CoZrH powder nanocomposite (30 wt%) with powdered aluminum (70 wt%), hydrothermal treatment of the mixture and subsequent calcination.

View Article and Find Full Text PDF

A mixed oxide of silver and nickel AgNiO was obtained co-precipitation in alkaline medium. This oxide demonstrates room temperature activity in the reaction of ethylene epoxidation with a high selectivity (up to 70%). Using the PDF method, it was found that the initial structure of AgNiO contains stacking faults and silver vacancies, which cause the nonstoichiometry of the oxide (Ag/Ni < 1).

View Article and Find Full Text PDF

The application of composite materials as catalysts for the oxidation of CO and other toxic compounds is a promising approach for air purification. In this work, the composites comprising palladium and ceria components supported on multiwall carbon nanotubes, carbon nanofibers and Sibunit were studied in the reactions of CO and CH oxidation. The instrumental methods showed that the defective sites of carbon nanomaterials (CNMs) successfully stabilize the deposited components in a highly-dispersed state: PdO and CeO nanoparticles, subnanosized PdO and PdCeO clusters with an amorphous structure, as well as single Pd and Ce atoms, are formed.

View Article and Find Full Text PDF

The use of metal powders produced by mechanical treatment in various fields, such as catalysis or gas absorption, is often limited by the low specific surface area of the resulting particles. One of the possible solutions for increasing the particle fineness is hydrogen treatment; however, its effect on the structure of mechanically treated powders remains unexplored. In this work, for the first time, a metal-oxide nanocomposite powder was produced by mechanical alloying (MA) in a high-energy planetary ball mill from commercial powders of Zr and Co in the atomic ratio Co:Zr = 53:47 in an inert atmosphere, followed by high-pressure hydrogenation at room temperature.

View Article and Find Full Text PDF