During methylotrophic growth of Komagataella phaffii, a large amount of carbon is lost as CO. In this study, we aimed to construct a recovery system for carbon atoms, which emit as CO along the methanol dissimilation pathway in the form of formate when using strain fdh1Δ, the deletion mutant of formate dehydrogenase gene (FDH1). Strain fdh1Δ showed a severe growth defect when using methanol as the sole carbon source.
View Article and Find Full Text PDFThree Ogataea minuta var. minuta strains have been deposited as NBRC 0975, NBRC 10402, and NBRC 10746 in the National Institute of Technology and Evaluation (NITE) Biological Resource Center (NBRC) collection. We investigated the ability to produce secretory proteins and several genotypic and phenotypic characteristics in order to select the best strain for heterologous protein expression.
View Article and Find Full Text PDFOgataea minuta is a methylotrophic yeast that is closely related to Ogataea (Hansenula) polymorpha. Like other methylotrophic yeasts, O. minuta possesses strongly methanol-inducible genes, such as AOX1.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
June 2019
Background: Glycosyltransferases are type II membrane proteins that are responsible for glycan modification of proteins and lipids, and localize to distinct cisternae in the Golgi apparatus. During cisternal maturation, retrograde trafficking helps maintain the steady-state localization of these enzymes in the sub-compartments of the Golgi.
Methods: To understand how glycosyltransferases are recycled in the late Golgi complex, we searched for genes that are essential for budding yeast cell growth and that encode proteins localized in endosomes and in the Golgi.