In late December 1973, the United States enacted what some would come to call "the pitbull of environmental laws." In the 50 years since, the formidable regulatory teeth of the Endangered Species Act (ESA) have been credited with considerable successes, obliging agencies to draw upon the best available science to protect species and habitats. Yet human pressures continue to push the planet toward extinctions on a massive scale.
View Article and Find Full Text PDFUnderstanding functional correlations between the activities of neuron populations is vital for the analysis of neuronal networks. Analyzing large-scale neuroimaging data obtained from hundreds of neurons simultaneously poses significant visualization challenges. We developed V-NeuroStack, a novel network visualization tool to visualize data obtained using calcium imaging of spontaneous activity of neurons in a mouse brain slice as well as in vivo using two-photon imaging.
View Article and Find Full Text PDFInexpensive and accessible sensors are accelerating data acquisition in animal ecology. These technologies hold great potential for large-scale ecological understanding, but are limited by current processing approaches which inefficiently distill data into relevant information. We argue that animal ecologists can capitalize on large datasets generated by modern sensors by combining machine learning approaches with domain knowledge.
View Article and Find Full Text PDFHigh uptake of vaccinations is essential in fighting infectious diseases, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes the ongoing coronavirus disease 2019 (COVID-19) pandemic. Social media play a crucial role in propagating misinformation about vaccination, including through conspiracy theories and can negatively impact trust in vaccination. Users typically engage with multiple social media platforms; however, little is known about the role and content of cross-platform use in spreading vaccination-related information.
View Article and Find Full Text PDF