Population growth and climate change will impact food security and potentially exacerbate the environmental toll that agriculture has taken on our planet. These existential concerns demand that a passionate, interdisciplinary, and diverse community of plant science professionals is trained during the 21st century. Furthermore, societal trends that question the importance of science and expert knowledge highlight the need to better communicate the value of rigorous fundamental scientific exploration.
View Article and Find Full Text PDFSoybean was used as a model for studies of chemical induction of gene expression in seeds. A chimeric transcriptional activator, VGE, driven by the soybean seed glycinin G1 promoter, was used to induce the expression of an ER-targeted GFP(KDEL) reporter protein upon addition of the chemical ligand, methoxyfenozide. The chemical gene switch activated gene expression under in vitro conditions in somatic cotyledonary embryos and zygotic seed embryos cultured from transgenic soybean plants, as well as in seeds in planta under greenhouse conditions.
View Article and Find Full Text PDFThe B subunit of the heat labile toxin of enterotoxigenic Escherichia coli (LTB) was used as a model immunogen for production in soybean seed. LTB expression was directed to the endoplasmic reticulum (ER) of seed storage parenchyma cells for sequestration in de novo synthesized inert protein accretions derived from the ER. Pentameric LTB accumulated to 2.
View Article and Find Full Text PDFConstitutive expression of a gene encoding tobacco mosaic virus (TMV) coat protein (CP) in transgenic plants confers resistance to infection by TMV and related tobamoviruses. Here, we examined resistance to TMV by temporal and quantitative control of TMV Cg CP (CgCP) gene expression using a simple, methoxyfenozide-inducible system in Arabidopsis plants. By soil drenching with a commercial ecdysone agonist (Intrepid-2F/methoxyfenozide), most transgenic lines were induced from undetectable levels of gene expression to protein levels from 0.
View Article and Find Full Text PDFCD45, a transmembrane protein tyrosine phosphatase (PTP), can either positively or negatively regulate Src-family protein tyrosine kinase (PTK) activity in vivo. It is proposed that TCR-initiated signaling requires the segregation of PTP activities from the engaged TCR, based upon the differential membrane compartmentalization on the T cell surface. To test the importance of CD45 exclusion from lipid microdomains for proper TCR signaling, a chimeric molecule was generated by fusing the CD45 cytoplasmic region, which contains the PTP domains, to the amino-terminal 12 amino acids of Lck, which target Lck to lipid microdomains.
View Article and Find Full Text PDF