Publications by authors named "T Wollny"

Antimicrobial resistance is a major and growing global problem and new approaches to combat infections caused by antibiotic resistant bacterial strains are needed. In recent years, increasing attention has been paid to nanomedicine, which has great potential in the development of controlled systems for delivering drugs to specific sites and targeting specific cells, such as pathogenic microbes. There is continued interest in metallic nanoparticles and nanosystems based on metallic nanoparticles containing antimicrobial agents attached to their surface (core shell nanosystems), which offer unique properties, such as the ability to overcome microbial resistance, enhancing antimicrobial activity against both planktonic and biofilm embedded microorganisms, reducing cell toxicity and the possibility of reducing the dosage of antimicrobials.

View Article and Find Full Text PDF

Ceragenins (CSAs) are synthetic, lipid-based molecules that display activities of natural antimicrobial peptides. Previous studies demonstrated their high in vitro activity against pathogens causing urinary tract infections (UTIs), but their efficiency in vivo was not explored to date. In this study, we aimed to investigate the bactericidal efficiency of ceragenins against E.

View Article and Find Full Text PDF

It has been proven that tumour growth and progression are regulated by a variety of mediators released during the inflammatory process preceding the tumour appearance, but the role of inflammation in the development of bladder cancer is ambiguous. This study was designed around the hypothesis that sphingosine-1-phosphate (S1P), as a regulator of several cellular processes important in both inflammation and cancer development, may exert some of the pro-tumorigenic effects indirectly due to its ability to regulate the expression of human cathelicidin (hCAP-18). LL-37 peptide released from hCAP-18 is involved in the development of various types of cancer in humans, especially those associated with infections.

View Article and Find Full Text PDF

() is one of the most frequent opportunistic microorganisms causing infections in oncological patients, especially those with neutropenia. Through its ability to adapt to difficult environmental conditions and high intrinsic resistance to antibiotics, it successfully adapts and survives in the hospital environment, causing sporadic infections and outbreaks. It produces a variety of virulence factors that damage host cells, evade host immune responses, and permit colonization and infections of hospitalized patients, who usually develop blood stream, respiratory, urinary tract and skin infections.

View Article and Find Full Text PDF