Publications by authors named "T Wiegand"

The spatial distribution pattern of plant species is frequently driven by a combination of biotic and abiotic factors that jointly influence the arrival, establishment, and reproduction of plants. Comparing the spatial distribution of a target plant species in different populations represents a robust approach to identify the underlying mechanisms. We mapped all reproductive individuals of the Iberian pear () in five plots (1.

View Article and Find Full Text PDF

Recent advances in computational methods like AlphaFold have transformed structural biology, enabling accurate modeling of protein complexes and driving applications in drug discovery and protein engineering. However, predicting the structure of systems involving weak, transient, or dynamic interactions, or of complexes with disordered regions, remains challenging. Nuclear Magnetic Resonance (NMR) spectroscopy offers atomic-level insights into biomolecular complexes, even in weakly interacting and dynamic systems.

View Article and Find Full Text PDF

Tight junctions play an essential role in sealing tissues, by forming belts of adhesion strands around cellular perimeters. Recent work has shown that the condensation of ZO1 scaffold proteins is required for tight junction assembly. However, the mechanisms by which junctional condensates initiate at cell-cell contacts and elongate around cell perimeters remain unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Cortical condensates are transient structures that form in the actin cortex of oocytes and are rich in actin and N-WASP, forming through a phase separation process influenced by chemical kinetics.
  • The study reveals that N-WASP can undergo surface condensation on lipid bilayers, which is a key factor in the formation of these condensates.
  • The dynamics of condensate formation are regulated by a balance between their creation at the surface and the polymerization of actin, shedding light on the control of complex intracellular structures.
View Article and Find Full Text PDF

In temperate mixed forests, dominant ectomycorrhizal (EM) tree species usually coexist with diverse arbuscular mycorrhizal (AM) understorey tree species. Here, we investigated the spatial associations between AM and EM trees in two > 20 ha temperate forest mega-plots to better understand the observed 'EM-dominant versus AM-diverse' coexistence. Overall, we found that positive spatial associations (e.

View Article and Find Full Text PDF