Publications by authors named "T Wetzel"

Article Synopsis
  • A team of over 180 researchers from more than 40 countries is addressing the issues related to "phantom agents," which are proposed pathogenic agents that are listed without concrete evidence of their existence.
  • These phantom agents, identified only through symptoms and lacking proper isolates or genetic data, create obstacles for trade and plant certification, making effective detection and risk assessment difficult.
  • The researchers recommend removing these agents from regulatory lists and updating standards in line with modern diagnostic methods to facilitate germplasm exchange and support global agriculture.
View Article and Find Full Text PDF

The successful operation of a process that converts atmospheric CO into solid carbon products is presented as an alternative to fossil based solid carbon production. In a first step, CO is removed from the atmosphere by a direct air capture (DAC) unit. The gas is then mixed with hydrogen and enters a methanation unit.

View Article and Find Full Text PDF

This article is the second part of a study reporting the results of a novel carbon capture and utilization (CCU) process, which converts atmospheric CO into solid carbon materials. The CCU process combines direct air capture (DAC) with catalytic methanation, which is then followed by methane pyrolysis in a reactor filled with liquid tin. While Part 1 discussed the performance of the overall process and individual process steps regarding conversions and yields, Part 2 characterizes the solid carbon products obtained under various synthesis conditions.

View Article and Find Full Text PDF

The advances in high-throughput sequencing (HTS) technologies and bioinformatic tools have provided new opportunities for virus and viroid discovery and diagnostics. Hence, new sequences of viral origin are being discovered and published at a previously unseen rate. Therefore, a collective effort was undertaken to write and propose a framework for prioritizing the biological characterization steps needed after discovering a new plant virus to evaluate its impact at different levels.

View Article and Find Full Text PDF

Arginine, glutamine, and the branched chain amino acids (BCAAs) are a focus of increased interest in the field of oncology due to their importance in the metabolic reprogramming of cancer cells. In the tumor microenvironment (TME), these amino acids serve to support the elevated biosynthetic and energy demands of cancer cells, while simultaneously maintaining the growth, homeostasis, and effector function of tumor-infiltrating immune cells. To escape immune destruction, cancer cells utilize a variety of mechanisms to suppress the cytotoxic activity of effector T cells, facilitating T cell exhaustion.

View Article and Find Full Text PDF